应用拉曼和中红外衰减全反射光谱测定溶液和土壤中的硝酸盐
作者:
作者单位:

中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室

中图分类号:

S132

基金项目:

国家自然科学基金重点项目(41130749)资助


Rapid Determination of Nitrate in Solution and Soil Using Raman Spectroscopy and Mid-Infrared Attenuated Total Reflectance Spectroscopy
Author:
Affiliation:

Institute of Soil science Chinese Academy of Sciences,Institute of Soil science Chinese Academy of Sciences,Institute of Soil science Chinese Academy of Sciences,Institute of Soil science Chinese Academy of Sciences,Institute of Soil science Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为比较拉曼光谱和红外光谱在溶液和土壤中硝酸盐含量定量分析的适用性,采用两种光谱对溶液和土壤中的NO3 -N含量 (0 ~ 200 mg/L) 进行快速测定。结果表明,溶液中硝酸盐的拉曼特征峰在1 047 cm-1处,该特征峰强度与NO3 -N浓度成正比,对1 035 ~ 1 060 cm-1波段拉曼光谱峰面积和NO3 -N含量进行线性回归,决定系数 R2 为0.995 4;溶液中硝酸盐的中红外衰减全反射光谱特征吸收峰在 1 350 cm-1,吸收峰与NO3 -N含量成正比,特征吸收区 1 200 ~ 1 500 cm-1峰面积与NO3 -N含量的决定系数R2为 0.991 1,表明两种光谱都可用于溶液中硝酸盐的测定。对于土壤样品,红外光谱在 1 250 ~ 1 500 cm-1处有硝酸盐吸收峰,且吸收峰与NO3 -N含量成正比,峰面积与NO3 -N含量之间的决定系数R2为 0.968 4;而对于拉曼光谱,硝酸盐的拉曼峰因受较强干扰导致吸收峰不明显,峰面积与NO3 -N含量之间的决定系数R2仅为 0.000 9,表明中红外衰减全反射光谱可用于土壤中硝酸盐的测定,而拉曼光谱则很困难。因此,拉曼光谱和中红外衰减全反射光谱都可用于溶液中硝酸盐的测定,且前者灵敏度要高于后者;中红外衰减全反射光谱可用于土壤中硝酸盐的测定,而拉曼光谱难以用于土壤中硝酸盐定量分析,这为硝酸盐的快速测定提供理论依据和技术支持。

    Abstract:

    Raman spectroscopy and mid-infrared attenuated total reflection spectroscopy (ATR) were applied to determine nitrate-N content in solution and in soil. The results showed that the characteristic band of nitrate in solution in Raman spectrum was located 1 047 cm-1, and the intensity of the band increased with the nitrate nitrogen concentration. The coefficient of determination (R2) between band area and nitrate-N content was 0.995 4. The characteristic absorption band of nitrate in ATR was in the range of 1 200–1 500 cm-1, the absorption band is proportional to nitrate-N content, and the coefficient of determination R2 between band area and nitrate-N content was 0.991 1. For soil samples, the characteristic absorption band of nitrate by ATR was 1 250–1 500 cm-1, the absorption band has a significant positive correlation with nitrate, and the coefficient of determination R2 between band area and nitrate-N content was 0.968 4. However, the band of nitrate was not obvious by Raman spectroscopy. Therefore, both of two methods could determine nitrate in solution, but the sensitivity of Raman spectroscopy was better than ATR spectroscopy; for soil samples, ATR could be used to predict the nitrate but Raman spectroscopy could not.

    参考文献
    [1] Babiker IS, Mohamed MA, Terao H, Kato K, Ohta K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system[J]. Environment International, 2004, 29(8): 1009-1017.
    [2] Lunau M, Voss M, Erickson M, Dziallas C, Casciotti K, Ducklow H. Excess nitrate loads to coastal waters reduces nitrate removal efficiency: mechanism and implications for coastal eutrophication[J]. Environmental Microbiology, 2013, 15(5): 1492-1504.
    [3] 田国辉,陈亚杰,冯清茂. 拉曼光谱的发展及应用[J]. 化学工程师, 2008, 148(1): 34-36.
    [4] 常建华,董绮功. 波谱原理及解析[M]. 北京:科学出版社, 2001,113-118.
    [5] 黄红英,尹齐和. 傅里叶变换衰减全反射红外光谱法 (ATR-FTIR) 的原理与应用进展[J]. 中山大学研究生学刊(自然科学、医学版), 2011, 32(1): 20-31.
    [6] 陈柳. 拉曼光谱在水质分析中的应用: 展望及系统设计[J]. 光散射学报, 2004,16(2): 184-188.
    [7] 叶美芳,王志海,唐南安. 盐水溶液中常见阴离子团的激光拉曼光谱定量分析研究[J]. 西北地质, 2009, 42(3): 120-126.
    [8] Shaviv A, Kenny A, Shmulevitch I, Singher L, Raichlin Y, Katzir A. Direct monitoring of soil and water nitrate by FTIR based FEWS or membrane systems[J]. Environmental Science Technology, 2003, 37(12): 2807-2812.
    [9] 杨家宝,杜昌文,申亚珍,周健民. 基于傅里叶变换中红外光谱的小白菜硝酸盐含量的快速测定[J]. 分析化学,2013, 41(8): 1264-1268.
    [10] 邵艳秋,杜昌文,申亚珍,马菲,周健民. 基于中红外衰减全反射光谱的氮同位素标记硝态氮的快速测定[J]. 分析化学, 2014, 42(5): 747-752.
    [11] 陈勇,周瑶琪,查明,王爱国. 实验研究不同盐离子对水分子拉曼效应的影响[J]. 地球化学, 2008, 37(1): 22-26.
    [12] Linker R, Weiner M, Shmulevich I, Shaviv A. Nitrate determination in soil pastes using attenuated total reflectance mid-infrared spectroscopy: Improved accuracy via soil identification [J]. Biosystems Engineering, 2006, 94(1): 111-118.
    [13] Linker R, Shmulevich I, Kenny A, Shaviv A. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy[J]. Chemosphere, 2005, 61(5): 652-658.
    [14] Mernagh T, Wilde A. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 53(4): 765-771.
    [15] Changwen D, Linker R, Shaviv A, Jianmin Z. Evaluation of Net Nitrification Rate inTerra RossaSoil Using a Fourier Transform Infrared Attenuated Total Reflection 15N Tracing Technique[J]. Applied Spectroscopy, 2009, 63(10): 1168-1173.
    [16] MacDougall, D., Crummett, W.B. Guidelines for data acquisition and data quality evaluation in environmental chemistry[J]. Analytical Chemistry, 1980, 52: 2242-2249.
    [17] 何谋春,张志坚. 显微激光拉曼光谱在矿床学中的应用[J]. 岩矿测试, 2001, 20(1): 43-47.
    [18] 胡凯, 刘英俊. 沉积有机质的拉曼光谱研究[J]. 沉积学报, 1993, 11 ( 3): 64-70.
    [19] Roldán ML, Corrado G, Francioso O, Sánchez-Cortés S. Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles[J]. Analytica Chimica Acta, 2011, 699(1): 87-95.
    [20] 邓 晶,杜昌文,周健民,王火焰, 陈小琴. 基于红外衰减全反射光谱的温室土壤盐分特征研究[J]. 土壤学报, 2009, 46(4): 704-709.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邵艳秋,杜昌文,申亚珍,马 菲,周健民.应用拉曼和中红外衰减全反射光谱测定溶液和土壤中的硝酸盐[J].土壤,2015,47(3):596-601. SHAO Yan-qiu, DU Chang-wen, SHEN Ya-zhen, MA Fei, ZHOU Jian-min. Rapid Determination of Nitrate in Solution and Soil Using Raman Spectroscopy and Mid-Infrared Attenuated Total Reflectance Spectroscopy[J]. Soils,2015,47(3):596-601

复制
分享
文章指标
  • 点击次数:1476
  • 下载次数: 3826
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-06-03
  • 最后修改日期:2014-07-23
  • 录用日期:2014-09-17
  • 在线发布日期: 2015-07-13
文章二维码