四氯乙烯和萘在氧化前后的含水层土壤上的吸附 与加标解吸研究
作者:
作者单位:

国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所,北京建工环境修复股份有限公司武汉分公司,国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所,国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所,国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所,国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所,环保部南京环境科学研究所,国家环境保护土壤环境管理与污染控制重点实验室环境保护部南京环境科学研究所

作者简介:

王磊(1986—),男,硕士,助理研究员,主要研究方向为土壤与地下水污染防治。E-mail: leiwang@nies.org

中图分类号:

X131;O647

基金项目:

国家高技术研究发展计划(863计划)(2013AA06A208),中央级公益性科研院所基本科研业务专项(2014),江苏省环保科研课题(2012037)和人社部高层次留学人才回国工作经费(2013)资助


Sorption and Spiked Sample Desorption of Tetrachloroethylene and Naphthalene in Aquifer Soils
Author:
Affiliation:

Nanjing institute of environmental sciences, MEP.,Beijing Construction Engineering Group Environmental Remediation incorporated company,Nanjing institute of environmental sciences, MEP.,Nanjing institute of environmental sciences, MEP.,Nanjing institute of environmental sciences, MEP.,Nanjing institute of environmental sciences, MEP.,Nanjing Institute of Environmental Science, Ministry of Environmental Protection,Nanjing institute of environmental sciences, MEP.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用批量平衡实验法研究了四氯乙烯和萘在过氧化氢氧化前后含水层土壤上的吸附。原土经过氧化氢处理后有机质含量明显降低,但是处理前后的土样对四氯乙烯和萘的吸附差别极小。过氧化氢对原土中极性官能团的破坏使原土中的大分子有机质变为小分子的可溶性有机质离开体系,造成土壤有机质含量降低。这些具有极性官能团的大分子有机质对研究的两种化合物的吸附贡献很小。在调节液固比使各种单一体系中的液相浓度差异达到一至两个数量级的情况下,加标解吸体系下的等温线仍表现为非常规的近似水平线,说明液相浓度的降低不足以使土壤中吸附的化合物发生解吸。这一结果从另一侧面说明两种目标物在研究土壤上的吸附是以在致密有机相上的吸附为主,而这部分有机质不会被过氧化氢所氧化。因此,在评估污染土壤对地下水的危害时,需慎重使用通过吸附实验得到并基于有机质总量的分配系数。

    Abstract:

    Sorption and desorption of tetrachloroethylene (PCE) and naphthalene (NAP) on the aquifer soils were studied by using bath equilibrium methods. The organic matter contents of the soil samples were decreased obviously after oxidation by hydrogen peroxide (H2O2) at room temperature, but the sorption isotherms of the two hydrophobic compounds to the aquifer soils before and after oxidation were almost overlapped. Hydrogen peroxide could damage the polar functional groups of organic macromolecular of the original soil into small polar molecules and then left the system by subsequent treatment, which may be the key reason for the decrease of soil organic matter content. These polar functional groups of organic macromolecular had little contribution to sorption of the two non-polar compounds. In the desorption system, the isotherms showed unconventional approximate horizontal while the equilibrium concentration had one to two orders of magnitude differences, which showed that decreasing the equilibrium concentration was not enough to make the compounds desorb from the solid phase. The results showed that sorption of the compounds used in this study to the condensed organic phase dominated the overall sorption on the soil and this part of organic phase was hard to be oxidized by hydrogen peroxide. Thus, it should be careful to make use of the distribution coefficient measured by traditional solid-liquid equilibrium system in soil and groundwater pollution risk assessment.

    参考文献
    [1]Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol., 2000, 34(20): 4259–4265.
    [2]Chiou C T. Partition and adsorption of organic contaminants in environmental systems. Hoboken, New Jersey: John Wiley Sons, 2002.
    [3]LeBoeuf E J, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for a polymer-based model. Environ. Sci. Technol., 1997, 31(1): 1697–1702.
    [4]LeBoeuf E J, Weber W J Jr. Macromolecular characteristics of natural organic matter. 1. Insights from glass transition and enthalpic relaxation behavior. Environ. Sci. Technol., 2000, 34(17): 3623-3631.
    [5]Pignatello J J, Xing B S. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environ. Sci. Technol., 1996, 30(1): 1-11
    [6]Shi X, Ji L L, Zhu D Q. Investigating roles of organic and inorganic soil components in sorption of polar and nonpolar aromatic compounds. Environmental Pollution, 2010, 158: 319-324
    [7]王磊,孙成,郭会琴. 土壤有机质对疏水性有机污染物的非线性吸附及其影响因素. 土壤, 2012, 44 (3): 366-373.
    [8]刘振宇,郭会琴,何欢,杨绍贵,孙成. 苯噻草胺在土壤中的吸附与解吸行为研究. 环境科学, 2009, 30(6): 1756-1761.
    [9]Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental Organic Chemistry, 2nd ed. Wiley-Inter-Science, NewYork, 2003
    [10]Chiou C T, Peters L J, Freed V H. A physical concept of soil water equilibria for nonionic organic compou nds[J]. Science, 1979, 206: 831-832.
    [11]Schwarzenbach R P, Westall J. Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ. Sci. Technol., 1981, 15(11): 1360-1367.
    [12]丁浩然,王磊,龙涛,祝欣,田猛,万金忠,林玉锁. 活化过硫酸钠氧化土壤对挥发性有机污染物吸附特性的影响. 土壤学报, 录用待发表.
    [13]Mao J D, Ding G W, Xing B S. Domain mobility of humic acids investigated with one- and two-dimensional nuclear magnetic resonance: Support for dual-mode sorption model. Commun. Soil Sci. Plant Anal., 2002, 33(9/10): 1 679-1 688
    [14]Hung H W, Lin T F, Chiou C T. Partition coefficients of organic contaminants with carbohydrates. Environ. Sci. Technol., 2010,44(14): 5430-5436.
    [15]黄显南, 黄冬梅, 覃程荣, 王松锋. 纸浆TCF漂白中碳水化会物的保护.纸和造纸, 2005,2005(5):63-66.
    [16]Sato K, Aoki M, Noyori R. A “Green” Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide, SCIENCE, 1998, 241: 1646-1647.
    [17]李新平, 伍胜. 木素醌型发色基团与过氧化氢反应特性的研究进展. 纤维素科学与技术, 2006, 14(4): 52-56.
    [18]Sun Y F, Pignatello J J. Chemical Treatment of Pesticide Wastes. Evaluation of Fe(II1) Chelates for Catalytic Hydrogen Peroxide Oxidation of 2,4-D at Circumneutral PH. J. Agric. Food Chem., 1992, 40(2): 322-327.
    [19]Richardson D E., Yao H R, Frank K M., Bennett D A. Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate. J. Am. Chem. Soc., 2000, 122(8): 1729-1739.
    [20]郭会琴. 表面活性剂及有机溶剂增溶洗脱污染土壤中典型有机物的研究. 2009, 南京大学博士学位论文.
    [21]Liu P, Zhu D Q, Zhang H, Shi X, Sun H Y, Dang F. Sorption of polar and nonpolar aromatic compounds to four surface soils of eastern China. Environmental Pollution, 2008, 156(3):1053-1060.
    [22]Pan B, Xing B S, Liu W X, Tao S, Lin X M, Zhang Y X, Xiao Y, Dai H C, Yuan H S. Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environmental Pollution, 2006, 143(3): 24-33.
    [23]Zhu DQ, Hyun S, Pignatello JJ, Lee LS. Evidence for π-π Electron Donor-Acceptor interactions between π-Donor aromatic compounds and π-Acceptor sites in soil organic matter through pH effects on sorption. Environ. Sci. Technol., 2004, 38(14) : 4361-4368
    [24]Chefetz B, Xing BS. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review. Environ. Sci. Technol., 2009, 43(6): 1 680-1 688
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 磊,丁浩然,陈 樯,祝 欣,陈然然,龙 涛,王 荐,林玉锁.四氯乙烯和萘在氧化前后的含水层土壤上的吸附 与加标解吸研究[J].土壤,2015,47(4):725-732. WANG Lei, DING Hao-ran, CHEN Qiang, ZHU Xin, CHEN Ran-ran, LONG Tao, WANG Jian, LIN Yu-suo. Sorption and Spiked Sample Desorption of Tetrachloroethylene and Naphthalene in Aquifer Soils[J]. Soils,2015,47(4):725-732

复制
分享
文章指标
  • 点击次数:1158
  • 下载次数: 2487
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-08-01
  • 最后修改日期:2014-11-13
  • 录用日期:2014-12-15
  • 在线发布日期: 2015-07-14
文章二维码