羟基磷灰石–植物联合修复对Cu/Cd污染植物根际 土壤微生物群落的影响
作者:
作者单位:

中国科学院南京土壤研究所,中国科学院南京土壤研究所,中国科学院南京土壤研究所,中国科学院南京土壤研究所,中国科学院南京土壤研究所

中图分类号:

X53

基金项目:

国家自然科学基金项目(41471237)和中国科学院STS项目(KFJ-EW-STS-016)资助。


Effects of Combined Remediation of Hydroxyapatite–Plants on Rhizosphere Microbial Community of Cu/Cd Contaminated Soil
Author:
Affiliation:

Institute of Soil Science,Chinese Academy of Sciences,Institute of Soil Science,Chinese Academy of Sciences,Institute of Soil Science,Chinese Academy of Sciences,Institute of Soil Science,Chinese Academy of Sciences,Institute of Soil Science,Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对江西贵溪 Cu、Cd 重金属污染土壤,通过田间试验,比较无机生物材料羟基磷灰石及 3 种植物(海州香薷、巨菌草、伴矿景天)与羟基磷灰石联合修复对土壤总 Cu、Cd 的吸收及对活性 Cu、Cd 的钝化吸收能力差异。采用磷脂脂肪酸(PLFA)分析法,比较不同修复模式对土壤微生物群落结构的影响,以评估土壤微生态环境对不同修复措施的响应。研究结果表明:羟基磷灰石的施加可显著提高土壤 pH,并有效钝化土壤活性 Cu、Cd 含量,但对土壤总 Cu、Cd 的含量影响较小。植物与羟基磷灰石的联合修复在显著降低土壤活性 Cu、Cd (P<0.05) 的同时,减少了植物根际土壤总 Cu、Cd 的含量 (P<0.05)。不同修复措施对土壤微生物群落组成影响差异明显。单独施加羟基磷灰石与土壤真菌群落呈显著正相关,使土壤真菌生物量提高,从而引起真菌/细菌(F/B)的升高。植物与羟基磷灰石的联合修复可有效缓解土壤真菌化的趋势,其中巨菌草与羟基磷灰石的联合修复可有效提高土壤革兰氏阳性、革兰氏阴性细菌生物量及多样性,降低 F/B 值,从而降低土壤真菌病害的风险。不同植物根系活性代谢引起有机质的积累促进植物与羟基磷灰石处理中根际有机碳含量显著提高。聚类增强树(Aggregated boosted tree,ABT)分析结果表明:不同修复模式是影响土壤微生物群落的重要因素,其次土壤 pH 和 Cu 的含量及活性也是改变重金属污染区域微生物群落的因子。该研究从微生物群落结构角度解释了植物与羟基磷灰石联合修复对土壤微生态体系的作用,为开展 Cu、Cd 等重金属污染地植物与无机生物材料的联合修复方式的筛选及实施提供可靠的理论依据。

    Abstract:

    Via field experiments, the different effects of inorganic biological material hydroxyapatite and the combined remediations of three kind of plants (Elsholtzia Splendens, Pennisetumsp, Sedum plumbizincicola) with hydroxyapatite on the absorption of soil total Cu and Cd, the passivation and absorptive ability for available Cu amd Cd derived from Cu and Cd contaminated soils in Guixi was compared. PLFA method was used to study the effects of different remediations on soil microbial community, aiming to assess the response of soil micro-ecological environment to various remediations. The results showed that the application of hydroxyapatite increased soil pH value significantly and passivate available Cu and Cd in soil, while had little influence on total Cu and Cd contents in soil. The combined remediations of plants and hydroxyapatite not only reduced soil available Cu and Cd significantly (P<0.05), but also decreased soil total Cu and Cd contents in plant rhizosphere (P<0.05), mainly due to plant tissues absorption and fixation for metals, particularly the aboveground fractions. The effects of different remediations were significantly different on the composition of soil microbial community, sole hydroxyapatite application was positively correlated with soil fungi community and increased soil fungi biomass, which increased fungi/bacteria ratio, while the combined remediation of plant and hydroxyapatite could alleviate the trend of soil fungi enrichment effectively, the combined remediation of Pennisetumsp and hydroxyapatite increased the biomass and diversity of soil Gram positive and Gram negative bacteria and decreased F/B ratio, thus reduced the risk of soil fungi diseases. In addition, organic matter accumulation caused by different plants root metabolism significantly improved rhizosphere organic C of the combined remediation treatments. ABT analysis indicated that different remediations were most important influential factor on soil microbial community, other factors included soil pH value, the content and availability of Cu. The above results explained the combined remediation of plant and hydroxyapatite on soil micro-ecosystem from the perspective of microbial community composition, thus can provide reliable theory bases for the screening and conducting of combined remediation of plant and inorganic biological materials in Cu and Cd contaminated regions.

    参考文献
    [1] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments- A review [J]. Waste Management, 2008, 28(1): 215-225
    [2] 周静,崔红标,梁家妮,徐磊,祝振球,王兴祥,崔健,尚键. 重金属污染土壤修复技术的选择和面临的问题——以江铜贵冶九牛岗土壤修复示范工程项目为例[J]. 土壤, 2015, 47(2): 283-288
    [3] Leitenmaier B, Kupper H. Compartmentation and complexation of metals in hyperaccumulator plants[J]. Frontiers in Plant Science, 2013, 4(374):1-13
    [4] 胡鹏杰,李柱,S钟道旭,S郑蕾娜,S居述云,吴龙华,S骆永明. 我国土壤重金属污染植物吸收修复研究进展[J]. 植物生理学报, 2014, 50(5): 577-584
    [5] 崔红标,梁家妮,周静,陶美娟,谷健云,徐磊. 磷灰石和石灰联合巨菌草对重金属污染土壤的改良修复[J]. 农业环境科学学报, 2013, 32(7): 1334-1340
    [6] Chen JH, Wang YJ, Zhou DM, Cui YX, Wang SQ. Adsorption and desorption of Cu(II), Zn(II), Pb(II), and Cd(II) on the soils amended with nanoscale hydroxyapatite [J]. Environmental Progress Sustainable Energy, 2010, 29(2): 233-241
    [7] Cui HB, Zhou J, Zhao QG, Si YB, Mao JD, Fang GD, Liang JN. Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite [J] . Journal of Soils Sediments, 2013, 13(4): 742-752
    [8] 滕应,骆永明,李振高. 污染土壤的微生物多样性研究[J]. 土壤学报, 43(6): 1018-1026
    [9] 鲁如坤. 土壤农业化学分析法[M]. 北京:中国农业科技出社,2000#$NL
    [10]土壤质量-铜、锌的测定-火焰原子吸收分光光度法.北京:中国环境保护局, GB/TS17138, 1997#$NL
    [11]土壤质量-铅、镉的测定-石墨炉原子吸收分光光度法.S北京:中国环境保护局, GB/T17141, 1997
    [12] White DC, Stair JO, Ringelberg DB. Quantitative comparisons of in situmicrobial biodiversity by signature biomarker analysis [J]. Journal of Industry Microbiology, 1996, 17(3): 185 -196
    [13] Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917
    [14] Fronsegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbiology, 1993, 59(11): 3605-3617
    [15] Kourtev PS, Ehrenfeld JG, Haggblom M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11): 3152-3166
    [16] Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI. In situ stabilization of toxic metals in polluted soil using phosphates: theoretical prediction and experimental verification[J]. Journal of hazardous materials, 2005, 117(1):41-53
    [17] 王晓娟,王文斌,杨龙,金梁,宋瑜,姜少俊,秦兰兰. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23): 1-9
    [18] 苗欣宇, 周启星. 污染土壤植物修复效率影响因素研究进展[J]. 生态学杂志, 2015, 34(3): 870-877
    [19] 刘婷婷,彭程,王梦,段德超,施积炎. 海州香薷根细胞壁对铜的吸附固定机制研究[J]. 环境科学学报, 2014, 34(2): 514-523
    [20] 姜理英,杨肖娥,叶正钱,石伟勇. 海州香薷和紫花香薷对Cu Zn的吸收和积累[J]. 农业环境科学学报, 2003, 22(5): 524-528
    [21] Haichar FE, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground[J]. Soil Biology Biochemistry, 2014, 77: 69-80
    [22] Griffiths BS, Philippot L. Insights into the resistance and resilience of the soil microbial community[J]. FEMs Microbiology Reviews, 37(2): 112-129
    [23] 徐磊,周静,梁家妮,崔红标,陶美娟,陶志慧,祝振球,黄林. 巨菌草对Cu、Cd 污染土壤的修复潜力[J].生态学报, 2014, 34(18) : 5342-53
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙婷婷,徐 磊,周 静,樊剑波,陈 晏.羟基磷灰石–植物联合修复对Cu/Cd污染植物根际 土壤微生物群落的影响[J].土壤,2016,48(5):946-953. SUN Tingting, XU Lei, ZHOU Jing, FAN jianbo, CHEN Yan. Effects of Combined Remediation of Hydroxyapatite–Plants on Rhizosphere Microbial Community of Cu/Cd Contaminated Soil[J]. Soils,2016,48(5):946-953

复制
分享
文章指标
  • 点击次数:2069
  • 下载次数: 2563
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-11-10
  • 最后修改日期:2016-01-05
  • 录用日期:2016-02-04
  • 在线发布日期: 2016-09-27
  • 出版日期: 2016-10-25
文章二维码