黄土高原聚湫沉积旋回特征及地球化学划分
作者:
中图分类号:

P539.2;P934

基金项目:

黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1622)、国家自然科学基金项目(41471114)、湖南省教育厅科研项目(17C1075)和湖南文理学院博士科研启动基金项目(E07017015)资助。


Features and Geochemical Identification Index of Deposition Couplets in Landslide-dammed Reservoirs on Loess Plateau of China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    黄土高原聚湫/淤地坝内的沉积物是黄土再侵蚀搬运的直接结果,以高堆积速率和多沉积旋回为特征,是追踪该地区小流域土壤侵蚀、认识黄土高原地球关键带过程的理想载体。如何鉴定并有效划分沉积旋回是利用沉积序列恢复小流域土壤侵蚀和生态环境变化过程的基础。本文选取靖边和合水聚湫为代表,通过典型可见沉积旋回的物理、地球化学和生物等指标综合分析,较全面地认识沉积旋回特征,进而提出划分旋回的有效地球化学指标。结果表明:沉积旋回的下部粗颗粒层主要由粗粉砂和细砂组成,以低含水量、高亮度为特征,富集石英和锆石,Si和Zr含量高;上部细颗粒层主要由黏粒和细粉砂组成,具水平层理,含水量高,亮度较低,富集方解石、白云母、伊利石、绿泥石、高岭石等轻矿物,高Al、K、Fe、Rb、Ca和Sr等造岩元素,富含孢粉、有机碳氮、磷脂脂肪酸及微生物。在此基础上,提出Rb/Zr比值是有效划分黄土高原聚湫/淤地坝沉积旋回的地球化学指标。这为深入认识黄土高原地球关键带中侵蚀风化、水文和生态环境变化等过程提供了研究载体和基础。

    Abstract:

    The sediment in the landslide-dammed/check dam reservoirs on the Loess Plateau of China is the direct result of the erosion and retransfer of loess and is characterized by high deposition rate and lots of deposition couplets, thus it is an ideal object to trace erosion flux and understand the processes of the Earth’s Critical Zone. How to exactly identify and plot out the couplet is the basis for using the sediment sequence to recover soil erosion and eco-environment change within a small catchment. In this study, Jingbian (paleo) and Heshui landslide-dammed reservoirs in the north of Loess Plateau were choose as the study sites based on field investigation and documents records. Meanwhile, the physical, geochemical and biological characters of the representative couplets were analyzed in order to comprehensively understand the feature of the couplet and further put forwards the effective geochemical identification index. The results showed that the lower coarse-grained layer in the couplet was composed of coarse silts and fine sands, which was characterized by low water content and high luminance, enriched with quartz and zircon, along with high Si and Zr. On the other hand, the upper fine-grained one was characterized by high contents of clays and fine silts, high water content, low luminance and lenticular bedding, correlating well with high contents of calcite, muscovite, illite, chlorite and kaolinite, along with high Al, K, Fe, Rb, Ca, and Sr. Pollen, organic carbon and nitrogen, phospholipid fatty acids, microorganism also concentrated in this layer. Then, Rb/Zr ratios by XRF core scanning are recommended as the ideal geochemical index to identify deposition couplets within the sediment sequence. These results provide the scientific foundation on deeply realizing the processes of erosion and weathering, hydrology and eco-environment change in the Earth’s Critical Zone on the Loess Plateau.

    参考文献
    [1] Richter D D, Mobley M L. Monitoring earth’s critical zone[J]. Science, 2009, 326: 1067-1068
    [2] 杨建锋, 张翠光. 地球关键带:地质环境研究的新框架[J]. 水文地质工程地质, 2014, 41(3): 98-104
    [3] 朱永官, 李刚, 张甘霖, 傅伯杰. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70: 1859-1869
    [4] Xu X Z, Zhang H W, Zhang O Y. Development of check-dam systems in gullies on the Loess Plateau, China[J]. Environmental Science & Policy, 2004, 7(2): 79-86
    [5] Ran D C, Luo Q H, Zhou Z H, Wang G Q, Zhang X H. Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River[J]. International Journal of Sediment Research, 2008, 23(2): 159-166
    [6] Jin Z, Cui B L, Song Y, Shi W Y, Wang K B, Wang Y, Liang J. How many check dams do we need to build on the Loess Plateau?[J] Environmental Science & Technology, 2012, 46(16): 8527-8528
    [7] Yu Y G, Wang H J, Shi X F, Ran X B, Cui T W, Qiao S Q, Liu Y G. New discharge regime of the Huanghe (Yellow River): Causes and implications[J]. Continental Shelf Research, 2013, 69: 62-72
    [8] Wang S A, Fu B J, Piao S L, Lü Y H, Ciais P, Feng X M, Wang Y F. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 1-5
    [9] 刘震. 黄土高原地区水土保持淤地坝规划概述[J]. 中国水土保持, 2003, (12): 11-13
    [10] Wang X Q, Jin Z D, Chen L M, Xiao J, Zhang F. High-resolution X-ray fluorescence core scanning of landslide-dammed reservoir sediment sequences on the Chinese Loess Plateau: New insights into the formation and geochemical processes of annual freeze-thaw layers[J]. Geoderma, 2016, 279: 122-131
    [11] 龙翼, 张信宝, 李敏, 李勉, 张云奇. 陕北子州黄土丘陵区古聚湫洪水沉积层的确定及其产沙模数的研究[J]. 科学通报, 2009, 54(1): 73-78
    [12] Wang Y F, Chen L D, Fu B J, Lü Y H. Check dam sediments: an important indicator of the effects of environmental changes on soil erosion in the Loess Plateau in China[J]. Environmental Monitoring and Assessment, 2014, 186(7): 4275-4287
    [13] Zhang X B, Walling D E, He X, Long Y. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century[J]. Catena, 2009, 79(3): 205-213
    [14] Castillo C, Perez R, Gomez J A. A conceptual model of check dam hydraulics for gully control: efficiency, optimal spacing and relation with step-pools[J]. Hydrology and Earth System Sciences, 2014, 18(5): 1705-1721
    [15] Polyakov V O, Nichols M H, Mcclaran M P, Nearing M A. Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds[J]. Journal of Soil and Water Conservation, 2014, 69(5): 414-421
    [16] Zhao G J, Klik A, Mu X M, Wang F, Gao P, Sun W Y. Sediment yield estimation in a small watershed on the northern Loess Plateau, China[J]. Geomorphology, 2015, 241: 343-352
    [17] Zhao G J, Kondolf G M, Mu X M, Han M W, He Z, Zan R B, Wang F, Gao P, Sun W Y. Sediment yield reduction associated with land use changes and check dams in a catchment of the loess plateau, China[J]. Catena, 2017, 148: 126-137
    [18] Li X G, Wei X, Wei N. Correlating check dam sedimentation and rainstorm characteristics on the loess plateau, China[J]. Geomorphology, 2016, 265: 84-97
    [19] Chen F X, Fang N F, Wang Y X, Tong L S, Shi Z H. Biomarkers in sedimentary sequences: indicators to track sediment sources over decadal timescales[J]. Geomorphology, 2017, 278: 1-11
    [20] Wei Y H, He Z, Li Y J, Jiao J Y, Zhao G J, Mu X M. Sediment yield deduction from check–dams deposition in the weathered sandstone watershed on the north loess plateau, China[J]. Land Degradation & Development, 2017, 28: 217-231
    [21] 张信宝, Walling D E, 贺秀斌, 文安邦, 温仲明, 冯明义, 杨勤科, 齐永青. 黄土高原小流域植被变化和侵蚀产沙的孢粉示踪研究初探[J]. 第四纪研究, 2005, 25(6): 60-66
    [22] 李勋贵, 李占斌, 魏霞. 黄土高原淤地坝坝地淤积物两个重要物理特性指标研究[J]. 水土保持研究, 2007, 14(2): 218-220
    [23] 汪亚峰, 傅伯杰, 陈利顶, 吕一河, 王德, 宋成军. 黄土高原小流域淤地坝泥沙粒度的剖面分布[J]. 应用生态学报, 2009, 20(10): 2461-2467
    [24] 岳大鹏, 袁晓宁, 李奎, 刘鹏, 颜艳. 陕北子洲黄土洼坝淤地淤积剖面元素分布特征分析[J]. 干旱区地理, 2014, 37(5): 875-882
    [25] 靖边县地方志编纂委员会. 靖边县志[M]. 西安: 陕西人民出版社, 1993: 41-167
    [26] 合水县志编纂委员会. 合水县志[M]. 兰州: 甘肃文化出版社, 2006: 81-387
    [27] Croudace I W, Rindby A, Rothwell R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner[J]. Geological Society, London, Special Publications, 2006, 267(1): 51-63
    [28] Rothwell R G. Micro-XRF Studies of Sediment Cores: A Perspective on Capability and Application in the Environmental Sciences[M]. Springer: Micro-XRF Studies of Sediment Cores, 2015: 1-21
    [29] 阚尚,李福春,田智宇, 金章东, 肖军. 陕西靖边花豹湾聚湫坝地土壤的微生物群落结构特征及其影响因子[J]. 土壤, 2016, 48(2): 291-297
    [30] 曾蒙秀, 宋友桂. 新疆伊犁昭苏黄土剖面中的矿物组成及其风化意义[J]. 地质论评, 2013, 59(3): 575-586
    [31] Tjallingii R, Rohl U, Kolling M, Bickert T. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J]. Geochemistry Geophysics Geosystems, 2007, 8, doi: 10.1029/2006GC001393
    [32] Lowemark L, Chen H F, Yang T N, Kylander M, Yu E F, Hsu W Y, Lee T Q, Song S R, Jarvis S. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1250-1256
    [33] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 2012, 10: 991-1003
    [34] Bertrand S, Hughen K, Giosan L. Limited influence of sediment grain size on elemental XRF core scanner measurements[M]. Springer: Micro-XRF Studies of Sediment Cores, 2015: 473-490
    [35] Maclachlan S E, Hunt J E, Croudace I W. An empirical assessment of variable water content and grain-size on X-ray fluorescence core-scanning measurements of deep sea sediments[M]. Springer: Micro-XRF Studies of Sediment Cores, 2015: 173-185
    [36] Weltje J G, Bloemsma R M, Tjallingii R, Heslop D, Rohl U, Croudace I W. Prediction of geochemical composition from XRF core scanner data: A new multivariate approach including automatic selection of calibration samples and quantification of uncertainties[M]. Springer: Micro-XRF Studies of Sediment Cores, 2015: 507-534
    [37] Huang J J, L?wemark L, Chang Q, Lin T Y, Chen H F, Song S R, Wei K Y. Choosing optimal exposure times for XRF core-scanning: Suggestions based on the analysis of geological reference materials[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4): 1558-1566
    [38] Liang L J, Sun Y B, Beets C J, Prins M A, Wu F, Vandenberghe J. Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau[J]. Journal of Asian Earth Sciences, 2013, 69: 177-184
    [39] Liang L J, Sun Y B, Yao Z Q, Liu Y G, Wu F. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner[J]. Catena, 2012, 92: 75-82
    [40] Sun Y B, Liang L J, Bloemendal J, Li Y, Wu F, Yao Z Q, Liu Y G. High-resolution scanning XRF investigation of Chinese loess and its implications for millennial-scale monsoon variability[J]. Journal of Quaternary Science, 2016, 31(3): 191–202
    [41] Liu L W, Chen J, Chen Y, Ji J F, Lu H Y. Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon[J]. Chinese Science Bulletin, 2002, 47(15): 1298-1302
    [42] Chen J, Chen Y, Liu L W, Ji J F, Balsam W, Sun Y B, Lu H Y. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1471-1482
    [43] Jones A F, Macklin M G, Brewer P A. A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179 (1): 89-105
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王夏青,彭保发,李福春,阚 尚.黄土高原聚湫沉积旋回特征及地球化学划分[J].土壤,2018,50(5):1046-1054. WANG Xiaqing, PENG Baofa, LI Fuchun, KAN Shang. Features and Geochemical Identification Index of Deposition Couplets in Landslide-dammed Reservoirs on Loess Plateau of China[J]. Soils,2018,50(5):1046-1054

复制
分享
文章指标
  • 点击次数:1099
  • 下载次数: 2406
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-06-07
  • 最后修改日期:2017-08-17
  • 录用日期:2017-08-28
  • 在线发布日期: 2018-09-30
  • 出版日期: 2018-10-25
文章二维码