基于随机森林方法研究鄱阳湖典型洲滩植被群落分布与表层土壤因子耦合关系
作者:
作者单位:

1.中国科学院流域地理学重点实验室,中国科学院南京地理与湖泊研究所;2.中国科学院南京地理与湖泊研究

作者简介:

通讯作者:

中图分类号:

K903

基金项目:

中国科学院科技服务网络计划(STS)重点项目(KFJ-STS-ZDTP-011)、国家科技基础性工作专项(2013FY111800)和国家自然科学基金项目(41171024)资助。


Study on Relationships Between Vegetation Community Distribution and Topsoil Factors Based on Random Forests in Shoaly Wetlands of Poyang Lake
Author:
Affiliation:

1.Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Science;2.Nanjing Institute of Geography and Limnology, Chinese Academy of Science

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确识别湿地植被与土壤的相互作用是湿地恢复和保护的重要前提。水文情势是影响鄱阳湖地区植被分布的关键因子,而植被分布格局则会对湿地土壤养分累积与赋存形态产生影响。本文利用优化的随机森林(Random Forests)算法,基于多环境变量预测了鄱阳湖典型低滩植物(虉草,Phalaris arundinacea Linn)和高滩植物(南荻,Triarrhena lutarioriparia L. Liu)的分布,进而分析这两种植被表层土壤养分累积差异。结果表明:随机森林模型对虉草和南荻预测的精度分别达到了89.6% 和89.3%。模型给出了土壤因子的重要性排序。按土壤因子与虉草分布的密切相关程度,重要性依次为全钾、氨氮、有机质、含水率、全氮、有效磷、全磷、pH和硝态氮;按土壤因子与南荻分布的密切相关程度,重要性依次为全钾、pH、有机质、全氮、全磷、硝态氮、氨氮、含水率和有效磷。从植被分布与土壤因子的偏依赖图中可得出,南荻分布区较虉草分布区土壤酸性更强;虉草分布与土壤全氮、氨氮含量呈负相关关系,南荻分布则与土壤全氮含量呈正相关关系,而与氨氮关系不显著;虉草分布与土壤全磷含量正相关,而南荻则与全磷负相关;虉草和南荻与土壤有效磷相互作用关系较弱;此外虉草分布区钾含量低,二者负相关,而南荻分布区钾含量高,二者正相关。随机森林方法适用于模拟复杂的非线性关系,给出了单个土壤因子与植被之间的偏依赖关系,易于给出生态学意义上的解释,在研究湿地植被与环境因素的相互作用关系中有极大的推广价值。

    Abstract:

    Accurate identification of the interaction between vegetation and soil is an important premise of wetland restoration and protection. Hydrologic situation is the key factor affecting the distribution of wetland vegetation, while vegetation distribution pattern can affect the accumulation and occurrence form of soil nutrients. Based on soil environmental factors, optimized Random Forests was used to predict the distribution of Phalaris arundinacea Linn and Triarrhena lutarioriparia L. Liu, which grow in low elevation and high elevation of shoaly wetlands of Poyang Lake respectively. And then we analyzed soil nutrient accumulation under the two vegetation. Results showed that the predication accuracy by Random Forest was 89.6% for Phalaris arundinacea Linn and 89.3% for Triarrhena lutarioriparia L. Liu. According to the model, The importance of soil factors which closely related to Phalaris arundinacea Linn was in order of total potassium > ammonia nitrogen > organic matter > soil water content > total nitrogen > available phosphorus > total phosphorus > pH > nitrate nitrogen, and that for Triarrhena lutarioriparia L. Liu was in order of total potassium > pH > organic matter > total nitrogen > total phosphorus > nitrate nitrogen > ammonia nitrogen > soil water content > available phosphorus. From the partial dependent plot, pH value under Phalaris arundinacea Linn was significantly higher than that under Triarrhena lutarioriparia L. Liu. Distribution of Phalaris arundinacea Linn was negatively correlated to total nitrogen and ammonia nitrogen; distribution of Triarrhena lutarioriparia L. Liu was positively correlated to total nitrogen while week relationship between Triarrhena lutarioriparia L. Liu and ammonia nitrogen was found. Total phosphorus was positively correlated to Phalaris arundinacea Linn while negatively correlated to Triarrhena lutarioriparia L. Liu. Weak relationships were found between available phosphorus and the two kinds of vegetation. Total potassium was negatively correlated with Phalaris arundinacea Linn while positively correlated with Triarrhena lutarioriparia L. Liu. Soil water content was positively correlated to Phalaris arundinacea Linn while negatively correlated to Triarrhena lutarioriparia L. Liu. Random Forests is suitable for simulating complex nonlinear relation, and can show the partial dependence relationship between individual soil factors and vegetation, so can explain the results in the ecological sense. Random Forests is of great value in the study of the interaction between wetland vegetation and environmental factors.

    参考文献
    相似文献
    引证文献
引用本文

郑利林,徐金英,王晓龙,刘宝贵.基于随机森林方法研究鄱阳湖典型洲滩植被群落分布与表层土壤因子耦合关系[J].土壤,2020,52(2):378-385. ZHENG Lilin, XU Jinying, WANG Xiaolong, LIU Baogui. Study on Relationships Between Vegetation Community Distribution and Topsoil Factors Based on Random Forests in Shoaly Wetlands of Poyang Lake[J]. Soils,2020,52(2):378-385

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-30
  • 最后修改日期:2018-09-29
  • 录用日期:2018-10-18
  • 在线发布日期: 2020-04-24
  • 出版日期: 2020-04-25
文章二维码