横断山区森林土壤饱和导水率传递函数的评价与构建研究
作者:
中图分类号:

S152.7

基金项目:

第二次青藏高原综合科学考察研究项目(2019QZKK0903)、中国科学院战略性先导科技专项(A类)(XDA23090202)和国家自然科学基金重大项目(41790431)资助。


Evaluation and Construction of Pedo-transfer Function of Saturated Hydraulic Conductivity of Forest Soils in Hengduan Mountain Region
Author:
Fund Project:

The Key Program of the Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用国际上具有代表性的9种土壤饱和导水率(Ks)传递函数模型估算了横断山地区贡嘎山不同类型森林土壤的Ks,并与实测数据进行了比较,结果表明,现有模型在横断山地区的拟合结果与实测数据的偏差极大,其在研究区的适用性差。结合研究区土壤含石率偏高的特点,增加土壤石砾含量(粒径>2 mm)作为输入变量,同时选取土壤容重、有机质含量和颗粒分布3种土壤基本特性参数作为输入变量,构建了本区域Ks传递函数模型:Ks=9.48+12.32×BD+0.29×SOM – 1.94×GF+2.89×silt – 5.34×sand,结果显示,模型预测值与实测值相关系数为0.67,该模型可以作为横断山地区自然林地Ks传递函数使用,从而为山地森林水文过程和自然灾害预警研究提供实用的参数估算工具。

    Abstract:

    Nine classical pedo-transfer functions (PTFs) of soil saturated hydraulic conductivity(Ks) were used to estimate Ks of soils under different forests types in the Hengduan Mountains region. The results show that the estimated Ks by these PTFs deviate greatly from the measured data, indicating that current PTFs models are not applicable to the soils in the Hengduan Mountains. Considering the enrichment of soil gravels in study area, a new pedo-transfer function of Ksis established which containing soil gravel content (>2 mm, GF), bulk density (BD), organic matter content (SOM), and particle size distribution: Ks=9.48 + 12.32×BD + 0.29×SOM-1.94×GF + 2.89×silt-5.34×sand. The new pedo-transfer function can better predict Ks of forest soils in studied area with the correlation coefficient up to 0.67, which provides a crucial parameter estimation tool for studies on forest hydrological processes and natural hazards in mountainous areas.

    参考文献
    [1] Amundson R, Berhe A A, Hopmans J W, et al.Soil and human security in the 21st century[J].Science, 2015.
    [2] Bittelli M, Campbell G S, Tomei F.Soil Physics with Python[M].New York, USA:Oxford University Press, 2015.
    [3] Dai Y J, Shangguan W, Duan Q Y, et al.Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling[J].Journal of Hydrometeorology, 2013, 14(3):869-887.
    [4] Bouma J.Using soil survey data for quantitative land evaluationadvances in soil science[A]//Stewart B A.Advances in soil science.New York:Springer, 1989:177-213.
    [5] van Looy K, Bouma J, Herbst M, et al.Pedotransfer functions in earth system science:Challenges and perspectives[J].Reviews of Geophysics, 2017, 55(4):1199-1256.
    [6] Campbell G S, Shiozawa S.Prediction of hydraulic properties of soils using particle-size distribution and bulk density data[M].1992.
    [7] Wang Y Q, Shao M G, Liu Z P.Pedotransfer functions for predicting soil hydraulic properties of the Chinese loess plateau[J].Soil Science, 2012, 177(7):424-432.
    [8] Zhang Y G, Schaap M G.Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3)[J].Journal of Hydrology, 2017, 547:39-53.
    [9] Jarvis N J, Zavattaro L, Rajkai K, et al.Indirect estimation of near-saturated hydraulic conductivity from readily available soil information[J].Geoderma, 2002, 108(1/2):1-17.
    [10] Deb.Variability of hydraulic conductivity due to multiple factors[J].American Journal of Environmental Sciences, 2012, 8(5):489-502.
    [11] Bouma J, Jongerius A, Schoonderbeek D.Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data[J].Soil Science Society of America Journal, 1979, 43(2):261-264.
    [12] Elhakeem M, Papanicolaou A N T, Wilson C G, et al.Understanding saturated hydraulic conductivity under seasonal changes in climate and land use[J].Geoderma, 2018, 315:75-87.
    [13] Hirmas D R ", Giménez D, Nemes A, et al.Climate-induced changes in continental-scale soil macroporosity may intensify water cycle[J].Nature, 2018, 561(7721):100-103.
    [14] 聂小军, 刘淑珍, 刘海军, 等.藏东横断山区草地利用变化对土壤质量的影响[J].山地学报, 2009, 27(6):676-682.
    [15] 徐瑞池, 李秀珍, 胡凯衡, 等.横断山区山地灾害的动态危险性评价[J].灾害学, 2019, 34(3):196-201, 208.
    [16] 胡凯衡, 魏丽, 刘双, 等.横断山区泥石流空间格局和激发雨量分异性研究[J].地理学报, 2019, 74(11):2303-2313.
    [17] 李慧霞, 刘建立, 朱安宁, 等.预测天然文岩渠流域土壤饱和导水率的土壤转换函数方法比较研究[J].土壤, 2010, 42(3):438-445.
    [18] 熊东红, 翟娟, 杨丹, 等.元谋干热河谷冲沟集水区土壤入渗性能及其影响因素[J].水土保持学报, 2011, 25(6):170-175.
    [19] 刘芝芹, 黄新会, 王克勤.金沙江干热河谷不同土地利用类型土壤入渗特征及其影响因素[J].水土保持学报, 2014, 28(2):57-62.
    [20] 张建辉, 李勇, 杨忠.云南元谋干热河谷造林区植被生长与土壤渗透性的关系[J].山地学报, 2001, 19(1):25-28.
    [21] 战海霞.鲁中南山区不同植物群落下土壤颗粒分形与水文特征[D].泰安:山东农业大学, 2009.
    [22] 倪化勇.海螺沟景区典型泥石流流域地貌特征及灾害防治[J].水土保持研究, 2010, 17(1):154-158.
    [23] 沈泽昊, 方精云, 刘增力, 等.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报, 2001, 25(6):721-732.
    [24] Sun H Y, Wu Y H, Yu D, et al.Altitudinal gradient of microbial biomass phosphorus and its relationship with microbial biomass carbon, nitrogen, and rhizosphere soil phosphorus on the eastern slope of Gongga Mountain, SW China[J].PLoS One, 2013, 8(9):e72952.
    [25] 张保华, 何毓蓉, 苗国增, 等.贡嘎山东坡亚高山林区土壤结构综合评价[J].山地学报, 2006, 24(4):504-509.
    [26] 何毓蓉, 张保华, 黄成敏, 等.贡嘎山东坡林地土壤的诊断特性与系统分类[J].冰川冻土, 2004, 26(1):27-32.
    [27] 邵明安, 王全九, 黄明斌.土壤物理学[M].北京:高等教育出版社, 2006.
    [28] 王庆礼, 代力民, 许广山.简易森林土壤容重测定方法[J].生态学杂志, 1996, 15(3):68-69.
    [29] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    [30] 王红兰, 唐翔宇, 张维, 等.施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响[J].农业工程学报, 2015, 31(4):107-112.
    [31] Weynants M, Vereecken H, Javaux M.Revisiting vereecken pedotransfer functions:Introducing a closed-form hydraulic model[J].Vadose Zone Journal, 2009, 8(1):86-95.
    [32] Cosby B J, Hornberger G M, Clapp R B, et al.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 1984, 20(6):682-690.
    [33] Wosten T J H M.pedotransfer functions to evaluate soil quality.1997.
    [34] Puckett W E, Dane J H, Hajek B F.Physical and mineralogical data to determine soil hydraulic properties[J].Soil Science Society of America Journal, 1985, 49(4):831-836.
    [35] Vereecken H, Maes J, Feyen J.Estimating unsaturated hydraulic conductivity from easily measured soil properties[J].Soil Science, 1990, 149(1):1-12.
    [36] Saxton K E, Rawls W J.Soil water characteristic estimates by texture and organic matter for hydrologic solutions[J].Soil Science Society of America Journal, 2006, 70(5):1569-1578.
    [37] Julià M F, Monreal T E, Jiménez A S D C, et al.Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction[J].Geoderma, 2004, 123(3/4):257-277.
    [38] Ahuja L R, Cassel D K, Bruce R R, et al.Evaluation of spatial distribution of hydraulic conductivity using effective porosity data[J].Soil Science, 1989, 148(6):404-411.
    [39] 孙丽, 刘廷玺, 段利民, 等.科尔沁沙丘-草甸相间地区表土饱和导水率的土壤传递函数研究[J].土壤学报, 2015, 52(1):68-76.
    [40] 韩光中, 王德彩, 谢贤健.中国主要土壤类型的土壤容重传递函数研究[J].土壤学报, 2016, 53(1):93-102.
    [41] Yavitt J B, Harms K E, Garcia M N, et al.Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama[J].Soil Research, 2009, 47(7):674.
    [42] Rawls W J, Nemes A, Pachepsky Y.Effect of soil organic carbon on soil hydraulic properties[J].Developments in Soil Science, 2004, 30:95-114.
    [43] 敖家坤, 牛健植, 谢宝元, 等.土壤大孔隙结构对饱和导水率的影响[J].北京林业大学学报, 2021, 43(2):102-112.
    [44] 董辉, 罗潇, 李智飞.堆积碎石土细观孔隙空间特征对其渗透特性的定量影响[J].中南大学学报(自然科学版), 2017, 48(5):1367-1375.
    [45] 王金悦, 邓羽松, 李典云, 等.连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J].生态学报, 2021, 41(19):7689-7699.
    [46] 刘目兴, 吴丹, 吴四平, 等.三峡库区森林土壤大孔隙特征及对饱和导水率的影响[J].生态学报, 2016, 36(11):3189-3196.
    [47] 白一茹, 赵云鹏, 王幼奇, 等.宁夏砂田不同砾石覆盖厚度土壤入渗过程及模型分析[J].水土保持学报, 2017, 31(4):81-85.
    [48] 王慧芳, 邵明安, 王明玉.小碎石与细土混合介质的导水特性[J].土壤学报, 2010, 47(6):1086-1093.
    [49] Nasri B, Fouché O, Torri D.Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils[J].CATENA, 2015, 131:99-108.
    [50] 高鹏飞, 冉卓灵, 韩珍, 等.含岩屑紫色土水力特性及饱和导水率传递函数研究[J].土壤学报, 2021, 58(1):128-139.
    [51] Xu L H, Shi Z J, Wangle Y H, et al.Contribution of rock fragments on formation of forest soil macropores in the stoney mountains of The Loess Plateau, China[J].Journal of Food Agriculture & Environment, 2012, 10(2):1220-1226.
    [52] 张英虎, 牛健植, 李娇, 等.石砾参数对土壤水流和溶质运移影响研究进展[J].土壤, 2014, 46(4):589-598.
    [53] 杜阿朋, 王彦辉, 管伟, 等.六盘山叠叠沟小流域的土壤石砾含量坡面分布特征[J].水土保持学报, 2009, 23(5):76-80, 127.
    [54] 喻明美, 谢正生w.广州市白云山五种森林类型的土壤渗透性研究[J].水土保持研究, 2011, 18(1):153-156.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙志祥,崔俊芳,杨汝馨,唐翔宇,王根绪.横断山区森林土壤饱和导水率传递函数的评价与构建研究[J].土壤,2022,54(3):594-601. SUN Zhixiang, CUI Junfang, YANG Ruxing, TANG Xiangyu, WANG Genxu. Evaluation and Construction of Pedo-transfer Function of Saturated Hydraulic Conductivity of Forest Soils in Hengduan Mountain Region[J]. Soils,2022,54(3):594-601

复制
分享
文章指标
  • 点击次数:258
  • 下载次数: 1654
  • HTML阅读次数: 1629
  • 引用次数: 0
历史
  • 收稿日期:2021-09-13
  • 最后修改日期:2021-11-07
  • 录用日期:2021-11-08
  • 在线发布日期: 2022-06-27
文章二维码