尕海湿地不同退化梯度土壤脲酶与蛋白酶活性时空分布特征
作者:
中图分类号:

S154.2

基金项目:

国家自然科学基金项目(31860143)、甘肃省教育厅青年博士基金项目(2021QB-024)和甘肃农业大学青年导师基金项目(GAU-QDFC-2021-11)资助。


Temporal and Spatial Distribution Characteristics of Soil Urease and Protease Activities in Different Degraded Gradients of Gahai Wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨高寒湿地退化对土壤酶活性的影响,本文以青藏高原东缘尕海湿地未退化、轻度退化、中度退化和重度退化4种不同退化梯度的0~10、10~20和20~40 cm层土壤为研究对象,研究不同退化梯度土壤脲酶与蛋白酶活性时空变化特征。结果表明:随退化梯度加剧,土壤含水量降低,温度升高;土壤脲酶活性在0~40 cm土层中表现为随退化加剧而逐渐降低,而蛋白酶活性趋势恰好相反;除重度退化外,其他退化梯度土壤两种酶活性均随土层加深而降低;0~40 cm土层中脲酶与蛋白酶活性分别在7、8月和6、7月最高;相关性分析表明土壤脲酶活性与蛋白酶活性和温度极显著正相关(P<0.01);土壤蛋白酶活性与微生物生物量氮极显著正相关(P<0.01),与含水量和温度显著正相关(P<0.05),与硝态氮显著负相关(P<0.05)。沼泽化草甸退化显著增加土壤表层脲酶活性而降低蛋白酶活性;温度对土壤脲酶与蛋白酶活性起促进作用,含水量、微生物生物量氮对土壤蛋白酶活性具有促进作用。

    Abstract:

    In order to investigate the effect of alpine wetland degradation on soil enzyme activities, this paper investigated the spatial and temporal characteristics of soil urease and protease activities in 0-10, 10-20 and 20-40 cm layers in Gahai wetlands on the eastern edge of the Qinghai-Tibetan Plateau with four different degraded gradients:not degraded, slightly degraded, moderately degraded and severely degraded. The results showed that soil water content decreased but temperature increased with the increase of the degradation. Soil urease activity decreased but protease activity increased gradually with the increase of degradation in the 0-40 cm layer; Except for severely degraded, the two enzyme activities decreased with the increase of soil depth. The activity was the highest in the 0-40 cm layer in July and August for urease and in June and July for protease, respectively; Soil urease activity was positively correlated with protease activity and temperature (P<0.01), while soil protease activity was positively correlated with microbial nitrogen (P<0.01), water content and temperature (P<0.05), and negatively correlated with nitrate nitrogen (P<0.05). The degradation of marshy meadows significantly increased urease activity but decreased protease activity in topsoil; temperature promoted soil urease and protease activities, and water content and microbial nitrogen promoted soil protease activity.

    参考文献
    [1] 徐国荣, 马维伟, 宋良翠, 等.植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J].生态学报, 2020, 40(24):8917-8927.
    [2] Dunn C, Jones T G, Girard A, et al.Methodologies for extracellular enzyme assays from wetland soils[J].Wetlands, 2014, 34(1):9-17.
    [3] Wang L X, Pang X Y, Li N, et al.Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern Tibetan Plateau[J].CATENA, 2020, 194:104694.
    [4] Su Y Z, Li Y L, Cui J Y, et al.Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China[J].CATENA, 2005, 59(3):267-278.
    [5] Wallenstein M D, Mcmahon S K, Schimel J P.Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J].Global Change Biology, 2009, 15(7):1631-1639.
    [6] Burns R G, DeForest J L, Marxsen J, et al.Soil enzymes in a changing environment:Current knowledge and future directions[J].Soil Biology and Biochemistry, 2013, 58:216-234.
    [7] 王理德, 田青, 郭春秀, 等.不同退耕年限干旱绿洲植被群落及灰棕漠土特性变化[J].土壤学报, 2021, 58(6):1436-1447.
    [8] Schimel J, Becerra C A, Blankinship J.Estimating decay dynamics for enzyme activities in soils from different ecosystems[J].Soil Biology and Biochemistry, 2017, 114:5-11.
    [9] Dong L L, Sun T, Berg B, et al.Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland[J].Soil Biology and Biochemistry, 2019, 134:78-80.
    [10] 李海云, 张建贵, 姚拓, 等.退化高寒草地土壤养分、酶活性及生态化学计量特征[J].水土保持学报, 2018, 32(5):287-295.
    [11] 李军豪, 杨国靖, 王少平.青藏高原区退化高寒草甸植被和土壤特征[J].应用生态学报, 2020, 31(6):2109-2118.
    [12] 李邵宇, 孙建, 王毅, 等.青藏高原不同退化梯度草地土壤酶活性特征[J].草业科学, 2020, 37(12):2389-2402.
    [13] 蒋永梅, 师尚礼, 田永亮, 等.高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征[J].水土保持学报, 2017, 31(3):244-249.
    [14] Liu L F, Chen H, Jiang L, et al.Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands[J].CATENA, 2018, 170:119-128.
    [15] 胡容, 叶春, 蒲玉琳, 等.若尔盖高寒沼泽湿地退化过程中土壤有机氮组分的演变特征[J].土壤学报, 2019, 56(6):1425-1435.
    [16] 唐艳梅, 马维伟, 李广, 等.尕海湿地退化演替过程中土壤有机氮组分的变化特征[J].应用生态学报, 2021, 32(11):4077-4084.
    [17] 马维伟, 孙文颖.尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J].自然资源学报, 2020, 35(5):1250-1260.
    [18] Ma W W, Alhassan A R M, Wang Y S, et al.Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J].Nutrient Cycling in Agroecosystems, 2018, 112(3):335-354.
    [19] Wu J Q, Wang H Y, Li G, et al.Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau[J].Scientific Reports, 2020, 10(1):21271.
    [20] 关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986.
    [21] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [22] Cao R, Wei X, Yang Y, et al.The effect of water table decline on plant biomass and species composition in the Zoige peatland:A four-year in situ field experiment[J].Agriculture, Ecosystems & Environment, 2017, 247:389-395.
    [23] 闵凯凯, 何向阳, 吴倩怡, 等.参与碳氮磷转化的水解酶对不同施肥响应的差异[J].土壤, 2020, 52(4):718-727.
    [24] Du E, Terrer C, Pellegrini A F A, et al.Global patterns of terrestrial nitrogen and phosphorus limitation[J].Nature Geoscience, 2020, 13(3):221-226.
    [25] 徐静静, 刘隋赟昊, 朱新萍, 等.巴音布鲁克天鹅湖高寒湿地不同水分梯度土壤微生物及酶活性的差异[J].新疆农业大学学报, 2017, 40(5):337-344.
    [26] 张莹, 刘畅, 宋昂, 等.基于典范对应分析的会仙岩溶湿地土壤理化性质与土壤酶活性关系研究[J].中国岩溶, 2016, 35(1):11-18.
    [27] 胡雷, 王长庭, 王根绪, 等.三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化[J].草业学报, 2014, 23(3):8-19.
    [28] 闫瑞瑞, 闫玉春, 辛晓平, 等.不同放牧梯度下草甸草原土壤微生物和酶活性研究[J].生态环境学报, 2011, 20(2):259-265.
    [29] 王小燕, 姚宝辉, 张彩军, 等.甘南"黑土滩"型退化草甸土壤理化特性及酶活性季节变化[J].草地学报, 2021, 29(2):220-227.
    [30] Ma W W, Li G, Wu J H, et al.Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau[J].Geoderma, 2020, 377:114565.
    [31] 刘超, 赵光影, 宋艳宇, 等.气候变化背景下湿地土壤酶活性研究进展[J].中国农学通报, 2019, 35(33):91-97.
    [32] Wang X M, Yan B G, Fan B, et al.Temperature and soil microorganisms interact to affect Dodonaea viscosa growth on mountainsides[J].Plant Ecology, 2018, 219(7):759-774.
    [33] 许可.氮、磷添加对高寒泥炭湿地温室气体排放的影响及其酶学机制研究[D].北京:北京林业大学, 2017.
    [34] 郭嘉, 陈纪香, 于一雷, 等.黄河三角洲湿地典型盐生植物群落土壤酶活性研究[J].湿地科学与管理, 2020, 16(1):55-59.
    [35] 孙英杰, 徐广平, 沈育伊, 等.桂林会仙喀斯特湿地芦苇群落区土壤酶活性[J].湿地科学, 2018, 16(2):196-203.
    [36] 万忠梅, 宋长春.三江平原小叶章湿地土壤酶活性的季节动态[J].生态环境学报, 2010, 19(5):1215-1220.
    [37] 朱颖旸.崇明东滩湿地四种典型生境土壤胞外酶活性及影响因素[D].上海:华东师范大学, 2020.
    [38] 王理德, 王方琳, 郭春秀, 等.土壤酶学硏究进展[J].土壤, 2016, 48(1):12-21.
    [39] Zhu X M, Liu M, Kou Y P, et al.Differential effects of N addition on the stoichiometry of microbes and extracellular enzymes in the rhizosphere and bulk soils of an alpine shrubland[J].Plant and Soil, 2020, 449(1/2):285-301.
    [40] Sharma N, Kumar S.Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions[J].Journal of Soils and Sediments, 2021, 21(1):13-26.
    [41] 罗琰, 苏德荣, 吕世海, 等.辉河湿地河岸带土壤养分与酶活性特征及相关性研究[J].土壤, 2017, 49(1):203-207.
    [42] 黄海莉, 宗宁, 何念鹏, 等.青藏高原高寒草甸不同海拔土壤酶化学计量特征[J].应用生态学报, 2019, 30(11):3689-3696.
    [43] 马书琴, 汪子微, 陈有超, 等.藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J].植物生态学报, 2021, 45(5):516-527.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常文华,马维伟,李广,徐国荣,宋良翠.尕海湿地不同退化梯度土壤脲酶与蛋白酶活性时空分布特征[J].土壤,2022,54(3):524-531. CHANG Wenhua, MA Weiwei, LI Guang, XU Guorong, SONG Liangcui. Temporal and Spatial Distribution Characteristics of Soil Urease and Protease Activities in Different Degraded Gradients of Gahai Wetland[J]. Soils,2022,54(3):524-531

复制
分享
文章指标
  • 点击次数:165
  • 下载次数: 1609
  • HTML阅读次数: 1518
  • 引用次数: 0
历史
  • 收稿日期:2021-09-28
  • 最后修改日期:2022-02-09
  • 录用日期:2022-02-15
  • 在线发布日期: 2022-06-27
文章二维码