基于数字图像技术反演中国东北黑土有机质含量
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S151.9

基金项目:

国家重点研发计划项目(2021YFD1500202)、中国科学院战略性先导科技专项项目(XDA2801010104)和国家重点农业科技项目(NK2022180104)资助。


Reversing Organic Matter Contents in Black Soils in Northeast China Using Digital Image Technology
Author:
Affiliation:

Fund Project:

National Key R&D Program of China, Strategic Priority Research Program of Chinese Academy of Sciences, National Key Agricultural Science and Technology Project of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以东北黑土为研究对象,利用数码相机获取黑土的数字图像,遴选与土壤有机质(SOM)含量相关的红(R)、绿(G)、蓝(B)颜色分量,并通过逐步多元回归(SMRM)和神经网络模型(NNM)建立基于数字图像的SOM含量预测模型。结果表明:黑土数字图像的各颜色分量原始值与SOM含量的相关系数绝对值(|r|)依次为:R>G>B,分别为0.67、0.65、0.50。原始值经对数和开平方数值变换后,|r|增加,而经倒数和平方变换后,|r|降低。据此,基于数字图像R、G、B颜色分量的原始值和各变换值建立了预测SOM含量的SMRM模型,训练集和验证集决定系数(R2)分别为0.43 ~ 0.50和0.46 ~ 0.50,均方根误差(RMSE)分别为1.28% ~ 1.39% 和1.31% ~ 1.39%(P<0.001),其中基于对数和开平方变换值的模型拟合程度和预测精度更高。同时,利用NNM模型基于黑土R、G、B颜色分量的原始值反演SOM含量,发现多层感知器算法模型得到的黑土SOM实测值和预测值之间R2均为0.49,RMSE为1.31% 和1.28%(P<0.001)。因此,SMRM和NNM均能通过黑土数字图像的R、G、B颜色分量反演SOM含量,其是快速获取我国东北黑土SOM含量的一套可操作的预测方法

    Abstract:

    In the present study, digital images of black soil were identified by their red (R), green (G), and blue (B) color components that correlate with SOM content, and then used to construct predictive stepwise multiple regression models (SMRM) and neural network methodologies (NNM) for SOM content. Our findings revealed that the absolute value of correlation coefficients (|r|) between each original color component and SOM content followed the order: R>G>B, with |r| of 0.67, 0.65 and 0.50, respectively. The |r| value increased after logarithmic and square root transformations, but decreased following reciprocal and square changes. The determination coefficient (R2) for SMRM training and validation sets with and without transformations fall within the range of 0.43 to 0.50 and 0.46 to 0.50, and the root mean square error (RMSE) ranged 1.28%–1.39%, and 1.31%–1.39%, respectively (P<0.001). Specifically, SMRM incorporating logarithmic and square root transformations of R, G and B color components demonstrated superior predictive performance and higher accuracy. Subsequently, multi-layer perceptron neural networks using original values of R, G and B color components successfully estimated SOM content, with R2 of 0.49 and 0.49, and RMSE of 1.31% and 1.28% for the training and validation sets, respectively (P<0.001). Therefore, both SMRM and NNM provided effective estimates in SOM content for black soil using its digital image. Our findings provide an operational prediction model for the rapid assessment of SOM content of black soil in northeast China.

    参考文献
    相似文献
    引证文献
引用本文

王亚丹,张凤,胡文友,于东升,迟凤琴,张超,徐英德,杨顺华,俞元春,姜军,徐仁扣.基于数字图像技术反演中国东北黑土有机质含量[J].土壤,2024,56(5):1051-1056. WANG Yadan, ZHANG Feng, HU Wenyou, YU Dongsheng, CHI Fengqin, ZHANG Chao, XU Yingde, YANG Shunhua, YU Yuanchun, JIANG Jun, XU Renkou. Reversing Organic Matter Contents in Black Soils in Northeast China Using Digital Image Technology[J]. Soils,2024,56(5):1051-1056

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-25
  • 最后修改日期:2023-12-05
  • 录用日期:2023-12-07
  • 在线发布日期: 2024-11-14
  • 出版日期:
文章二维码