基于高通量测序的土壤可培养有机解磷菌多样性研究
作者:
中图分类号:

X171;S154.3

基金项目:

国家自然科学基金项目(42177280)资助。


Diversity Assessment of Soil Culturable Organic Phosphate-solubilizing Bacteria Based on High-throughput Sequencing
Author:
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用常规细菌培养基(BPM)、无机解磷菌培养基(IPM)和有机解磷菌培养基(OPM)分别对土壤解磷菌进行平板培养,经3次传代富集,获得可培养微生物菌落集合,连同原位土壤,以phoD基因为分子标靶进行高通量测序分析,评价土壤本底和可培养解磷菌多样性差异,及其在不同培养基中的富集规律。结果表明:基于phoD基因的高通量测序结果能够较大程度覆盖土壤本底和菌落富集物中phoD相关解磷菌种群,Goods coverage指数大于98.3%。土壤可培养解磷菌phoD基因的α多样性显著低于原位土壤,其中Shannon和Simpson指数在IPM中最低,而在BPM和OPM中无显著差异;Chao 1指数在不同培养基富集物中均无显著差异,仅为原位土壤的5.3% ~ 8.4%。在微生物属水平对phoD基因序列进行分类注释发现,原位土壤共检测到34属可分类解磷菌,可培养解磷菌的比例约为26.5% ~ 41.2%。原位土壤和不同培养基富集物之间的phoD相关解磷菌共有属仅为6个,多为可培养的优势属,包括PseudomonasBradyrhizobiumCupriavidusSinorhizobiumXanthomonasActinoplanes。进一步通过LEfSe(LDA effect size)差异分析显示,共有属中有4个在不同培养基中存在显著富集差异,Cupriavidus在IPM和OPM中显著富集,而PseudomonasBradyrhizobiumXanthomonas在BPM和OPM中显著富集。此外,Burkholderia仅在OPM中被检测。最后,在属水平上还存在大量phoD基因序列目前无明确分类,在所测序列中占比为0.13% ~ 59.6%。本研究通过将传统微生物培养技术与高通量测序技术相结合,定量评价了培养基成分对土壤可培养解磷菌phoD基因多样性的影响,揭示了phoD相关解磷菌的可培养特性和生理特点,为发掘和利用土壤解磷菌资源提供了参考。未来亟待培养技术创新,以定向分离和鉴定更多解磷菌,增强对环境解磷资源微生物的全面认识。

    Abstract:

    By using conventional bacteria medium (BPM), inorganic phosphate-solubilizing bacteria (PSB) medium (IPM) and organic PSB medium (OPM), culturable microbial colonies were collected after third serial passage on agar plates. High-throughput sequencing analysis of phoD gene as molecular target were employed to evaluate the diversity differences of PSB in the background soil and colony enrichments from different media. The results showed that phoD gene sequences obtained from high-throughput sequencing could largely cover phoD-related PSB communities in the background soil and colony enrichments, and the Goods coverage index exceeded 98.3%. α diversity of phoD gene in colony enrichments were significantly lower than the background soil, and Shannon and Simpson indices of phoD gene were the lowest in IPM, but had no significant difference between BPM and OPM. Chao 1 index of phoD gene showed no significant difference in different media, accounting for 5.3%–8.4% of the background soil. According to the taxonomic annotation of phoD gene, 34 genera of PSB were detected in the background soil and the proportion of culturable PSB were only about 26.5%–41.2%. Among the background soil and the colony enrichments from different media, there were 6 common genera of PSB, which usually dominated in the culturable PSB communities, including Pseudomonas, Bradyrhizobium, Cupriavidus, Sinorhizobium, Xanthomonas and Actinoplanes,. Further LEfSe (LDA effect size) analysis showed that 4 genera above had significant differences among different media, Cupriavidus was significantly enriched in both IPM and OPM, while Pseudomonas, Bradyrhizobium and Xanthomonas were significantly enriched in both BPM and OPM. Moreover, Burkholderia was only detected in OPM. Finally, at the genus level, lots of phoD gene sequences couldn’t be clearly classified at present which accounted for 0.13% to 59.6% of the total phoD sequences. In conclusion, by combining traditional microbial culture technology with high-throughput sequencing technology, this study quantitatively analyzed the influence of medium components on phoD gene diversity of soil culturable PSB, and meanwhile revealed the culturable and physiological characteristics of phoD-related PSB, which can provide a reference for the exploration and utilization of soil PSB resources. In the future, the innovation of culture technology is urgently needed to isolate and identify more PSB for enhancing the overall understanding of PSB resources in the environment.

    参考文献
    [1] Sarmah R, Sarma A K. Phosphate solubilizing microorganisms: A review[J]. Communications in Soil Science and Plant Analysis, 2023, 54(10): 1306–1315.
    [2] Rawat P, Das S, Shankhdhar D, et al. Phosphate- solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49–68.
    [3] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展[J]. 生态学报, 2023, 43(11): 4390–4399.
    [4] Hu Y J, Xia Y H, Sun Q, et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils[J]. Science of the Total Environment, 2018, 628: 53–63.
    [5] Neal A L, Rossmann M, Brearley C, et al. Land-use influences phosphatase gene microdiversity in soils[J]. Environmental Microbiology, 2017, 19(7): 2740–2753.
    [6] Wan W J, He D L, Li X, et al. Adaptation of phoD- harboring bacteria to broader environmental gradients at high elevations than at low elevations in the Shennongjia primeval forest[J]. Geoderma, 2021, 401: 115210.
    [7] Wan W J, Liu S, Li X, et al. Dispersal limitation driving phoD-harboring bacterial community assembly: A potential indicator for ecosystem multifunctionality in long-term fertilized soils[J]. Science of the Total Environment, 2021, 754: 141960.
    [8] 马凯, 王效昌, 谢嘉慧, 等. 沉积物解磷菌的研究进展: 分布、解磷能力及功能基因[J]. 农业资源与环境学报, 2023, 40(2): 280–290.
    [9] 李凯凯, 曹伟伟, 文昌丽, 等. 基于高通量测序的稀释平板计数细菌群落变化研究[J]. 微生物学报, 2022, 62(11): 4447–4464.
    [10] 文昌丽, 曹伟伟, 唐雪莲, 等. 基于高通量测序的连续传代富集土壤可培养菌菌群变化规律研究[J]. 生态与农村环境学报, 2023, 39(1): 123–135.
    [11] Quail M A, Kozarewa I, Smith F, et al. A large genome center’s improvements to the Illumina sequencing system[J]. Nature Methods, 2008, 5(12): 1005–1010.
    [12] 夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价[J]. 微生物学报, 2014, 54(12): 1489– 1499.
    [13] 喻江, 王淳, 龙永, 等. 鄱阳湖湿地细菌群落多样性和可培养细菌功能基因丰度[J]. 环境科学, 2024, 45(4): 2223–2232.
    [14] Fraser T D, Lynch D H, Bent E, et al. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management[J]. Soil Biology and Biochemistry, 2015, 88: 137–147.
    [15] 熊盈盈, 莫祯妮, 邱树毅, 等. 未培养环境微生物培养方法的研究进展[J]. 微生物学通报, 2021, 48(5): 1765– 1779.
    [16] Aagot N, Nybroe O, Nielsen P, et al. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media[J]. Applied and Environmental Microbiology, 2001, 67(11): 5233–5239.
    [17] Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373–399.
    [18] Bruns A, Nübel U, Cypionka H, et al. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton[J]. Applied and Environmental Microbiology, 2003, 69(4): 1980–1989.
    [19] 岳秀娟, 余利岩, 张月琴. 自然界中处于VBNC状态微生物的研究进展[J]. 微生物学通报, 2004, 31(2): 108– 111.
    [20] Tamaki H, Sekiguchi Y, Hanada S, et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques[J]. Applied and Environmental Microbiology, 2005, 71(4): 2162–2169.
    [21] Tanaka T, Kawasaki K, Daimon S, et al. A hidden pitfall in the preparation of agar media undermines microorganism cultivability[J]. Applied and Environmental Microbiology, 2014, 80(24): 7659–7666.
    [22] 陈哲, 吴敏娜, 秦红灵, 等. 土壤微生物溶磷分子机理研究进展[J]. 土壤学报, 2009, 46(5): 925–931.
    [23] 姜焕焕, 李嘉钦, 陈刚, 等. 解磷微生物及其在盐碱土中的应用研究进展[J]. 土壤, 2021, 53(6): 1125–1131.
    [24] Qian Y C, Shi J Y, Chen Y X, et al. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: Isolation, molecular identification and phosphorus release ability determination[J]. Molecules, 2010, 15(11): 8518–8533.
    [25] Wan W J, Qin Y, Wu H Q, et al. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil[J]. Frontiers in Microbiology, 2020, 11: 752.
    [26] Yu X, Liu X, Zhu T H, et al. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization[J]. Biology and Fertility of Soils, 2011, 47(4): 437–446.
    [27] Janssen P J, Van Houdt R, Moors H, et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments[J]. PLoS One, 2010, 5(5): e10433.
    [28] Zheng M M, Wang C, Li W X, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of Southern China[J]. Frontiers in Microbiology, 2019, 10: 2654.
    [29] Minari G D, Saran L M, Lima Constancio M T, et al. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil[J]. Ecotoxicology and Environmental Safety, 2020, 204: 111038.
    [30] Mukherjee S, Bassler B L. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6): 371–382.
    [31] 石晶晶, 张林, 江飞焰, 等. AM真菌菌丝际细菌具有固氮解磷双重功能[J]. 土壤学报, 2021, 58(5): 1289–1298.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏围围,邹萌萌,张泽霖,陈晓芬,王玉芳,孙祥鑫,贾仲君.基于高通量测序的土壤可培养有机解磷菌多样性研究[J].土壤,2024,56(5):999-1006. XIA Weiwei, ZOU Mengmeng, ZHANG Zelin, CHEN Xiaofen, WANG Yufang, SUN Xiangxin, JIA Zhongjun. Diversity Assessment of Soil Culturable Organic Phosphate-solubilizing Bacteria Based on High-throughput Sequencing[J]. Soils,2024,56(5):999-1006

复制
分享
文章指标
  • 点击次数:111
  • 下载次数: 399
  • HTML阅读次数: 154
  • 引用次数: 0
历史
  • 收稿日期:2023-11-17
  • 最后修改日期:2024-01-03
  • 录用日期:2024-01-04
  • 在线发布日期: 2024-11-14
文章二维码