基于辅助变量和GARBF神经网络的黄河流域土壤镉空间分布预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X53

基金项目:

中央水专项资金项目(20220086A)和河南省自然科学基金项目(222300420539)资助。


Prediction of Spatial Distribution of Soil Cd in Yellow River Basin Based on Auxiliary Variables and GARBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确掌握黄河流域土壤镉的空间分布,以环境因子和土壤理化因子的不同组合作为辅助变量,利用遗传算法(GA)优化径向基函数(RBF)神经网络对黄河流域土壤镉的空间分布进行了预测,并与回归克里格、RBF神经网络预测精度进行了对比,探究了土壤理化因子和遗传算法对神经网络模型预测精度的影响。结果表明:①加入土壤理化因子(有机质含量、pH、CEC)可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)较仅基于环境因子的GARBF神经网络模型分别减小0.058 mg/kg、0.033 mg/kg、4.4个百分点;②遗传算法可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型的RMSE、MAE、MRE较基于环境因子和土壤理化数据的RBF神经网络模型分别减小0.009 mg/kg、0.005 mg/kg、0.6个百分点;③同时加入环境因子和土壤理化因子并使用遗传算法对神经网络模型进行优化得到的预测结果最优,基于环境因子和土壤理化因子的GARBF神经网络模型能用于黄河流域土壤镉的空间分布预测研究。

    Abstract:

    In order to accurately grasp the spatial distribution of soil cadmium in the Yellow River Basin, different combinations of environmental factors and soil physicochemical factors were used as auxiliary variables, and the genetic algorithm (GA) was used to optimize the radial basis function (RBF) neural network to predict the spatial distribution of soil cadmium in the Yellow River Basin, and the prediction accuracy of this model was compared with those of the regression Kriging and the RBF neural network, to investigate the effects of soil physicochemical factors and GA on the prediction accuracy of the neural network. The results showed that: 1) The addition of soil physicochemical factors (organic matter content, pH, CEC) could improve the prediction accuracy of the neural network model. The root mean square error (RMSE), mean absolute error (MAE), and mean relative error (MRE) of the GARBF neural network model based on the environmental factors and soil physicochemical factors were reduced by 0.058 mg/kg, 0.033 mg/kg, and 4.4 percentage points, respectively; 2) GA could improve the prediction accuracy of neural network models, and the RMSE, MAE, and MRE of the GARBF neural network model based on environmental factors and soil physicochemical factors were reduced by 0.009 mg/kg, 0.005 mg/kg, and 0.6 percentage points, respectively, compared with the RBF neural network model based on environmental factors and soil physicochemical factors. 3) The prediction results obtained by adding environmental factors and soil physicochemical factors and optimizing the neural network model using GA were optimal, and the GARBF neural network model based on environmental factors and soil physicochemical factors could be used to predict the spatial distribution of soil cadmium in the Yellow River Basin.

    参考文献
    相似文献
    引证文献
引用本文

张成才,郑文豪,闫亚宁,孙雨田,刘威,王永辉.基于辅助变量和GARBF神经网络的黄河流域土壤镉空间分布预测[J].土壤,2025,57(2):423-429. HANG Chengcai, ZHENG Wenhao, YAN Yaning, SUN Yutian, LIU Wei, WANG Yonghui. Prediction of Spatial Distribution of Soil Cd in Yellow River Basin Based on Auxiliary Variables and GARBF Neural Network[J]. Soils,2025,57(2):423-429

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-11
  • 最后修改日期:2024-07-29
  • 录用日期:2024-07-31
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码