基于特征变量多重扩增与筛选的区域土壤容重随机森林预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S159.9

基金项目:

国家重点研发计划专项(2021YFC1809104,2022YFB3903302)和国家农业重大科研项目(NK2022180104)资助。


Combining Multiple Feature Expansion and Screening for Predicting Regional Distribution of Soil Bulk Density in Random Forest Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以江西省鹰潭市为研究区,调查不同土地利用及土壤类型的131个样点表层(0 ~ 20 cm)土壤容重,结合多源环境大数据提取地形、遥感和气候等环境因子的66个变量构成原始特征集,创建特征变量多重扩增与筛选方法,即针对原始特征集及随机森林(RF)模型,依次开展基于主成分分析(PCA)的主成分提取-主成分扩增-交叉验证递归(RFECV)筛选-特征多项式扩增(PFE) -交叉验证递归(RFECV)再次筛选,最终获得了3个变量组合的最优特征集。基于最优特征集的RF土壤容重空间预测精度R2达0.469,比原始特征集的预测精度(R2=0.315) 提升了34%,且特征维度降低了95%,显著提升了空间预测效果及效率。

    Abstract:

    Taking Yingtan City, Jiangxi Province as the study area, the topsoil (0-20cm) bulk densities in 131 sampling sites under different land uses and soil types were investigated, 66 environmental factors such as topography, remote sensing, climate and so on were extracted to form the original feature set by combining the multi-source environmental big data. And a method of multiple am plification and screening of the feature variables was created, that was, for the original feature set and random forest (RF) model, PCA component extraction - component augmentation - recursive feature elimination with cross validation (RFECV) - polynomial feature expansion (PFE) - recursive feature elimination with cross validation (RFECV) re-screening being carried out in order. In the end, the optimal set of features for the combination of 3 variables was obtained. The spatial prediction accuracy of RF for soil bulk density based on the optimal feature set reached R2 of 0.469, which was 34% higher than that of the original feature set (R2=0.315), and the feature dimensionality was reduced by 95%, which significantly improved the spatial prediction effect and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

王桐,宋洁,王鑫,于东升,马利霞,樊剑波,刘明.基于特征变量多重扩增与筛选的区域土壤容重随机森林预测[J].土壤,2024,56(6):1347-1357. WANG Tong, SONG Jie, WANG Xin, YU Dongsheng, MA Lixia, FAN Jianbo, LIU Ming. Combining Multiple Feature Expansion and Screening for Predicting Regional Distribution of Soil Bulk Density in Random Forest Algorithm[J]. Soils,2024,56(6):1347-1357

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-17
  • 最后修改日期:2024-03-13
  • 录用日期:2024-03-15
  • 在线发布日期: 2025-01-09
  • 出版日期:
文章二维码