典型黑土区农场尺度土壤属性数字制图方法对比研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S159

基金项目:

中国科学院战略性先导科技专项课题(XDA28100500)、国家自然科学基金项目(42271369)和安徽省自然科学基金项目(2208085MD88)资助。


A Comparative Study of Farm-scale Digital Mapping Methods for Soil Attributes in the Typical Black Soil Region
Author:
Affiliation:

Fund Project:

Strategic pilot science and technology project of Chinese Academy of Sciences(XDA28100500);National natural science foundation of China(42271369);Supported by natural science foundation of Anhui Province(2208085MD88)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以东北典型黑土区友谊农场核心示范区为研究区,选取土壤因子、地形因子和遥感指数等环境变量,运用普通克里格(OK)、地理加权回归(GWR)、随机森林(RF)和随机森林-普通克里格(RF-OK)4种代表性数字土壤制图模型,对示范区表层土壤pH、土壤有机质(SOM)和土壤全氮(TN)进行空间预测制图,并根据模型精度选择最优模型绘制出空间分布不确定性图。结果表明:①示范区表层土壤pH、SOM和TN含量平均值分别为6.63、42.26 g/kg和1.94 g/kg,变异系数分别为13.67%、29.50%和31.98%,均属于中等程度空间变异;②对比4种模型精度指标,RF-OK模型对示范区pH和SOM的预测性能表现最佳(R2=0.83,CCC=0.84,RMSE=0.41和R2=0.72,CCC=0.68,RMSE=7.36 g/kg);RF模型对TN的预测性能最佳(R2=0.59,CCC=0.68,RMSE=0.36 g/kg);③示范区3种土壤属性的空间分布表现出较强的空间异质性,4种模型预测的土壤pH、SOM和TN空间分布的整体变化趋势基本一致,均表现出东北部高、西南部低的空间格局。本研究将不仅为示范区精准农业管理提供数据支持,也为数字土壤制图在实际应用中预测方法的选取提供有价值的参考。

    Abstract:

    Taking the core demonstration area of Youyi Farm, a typical black soil area in Northeast China, as the study area. Such as soil properties, topography, and remote sensing index were chosen as the environmental variables. Four representative digital soil mapping models, ordinary kriging (OK), geographically weighted regression (GWR), random forest (RF) and random forest-ordinary kriging (RF-OK), were selected to predict the contents and spatial distributions of surface soil pH, organic matter (SOM) and total nitrogen (TN) contents in the demonstration area. And uncertainty maps of spatial distribution were drawn by selecting the optimal model based on model accuracy. The results showed that the average value of pH, SOM, TN in the study area were 6.63, 42.26 g/kg and 1.94 g/kg. The coefficients of variation were 13.67%, 29.50% and 31.98%, respectively, all of which belonged to moderate spatial variation. In terms of the prediction accuracies of the four models, RF-OK model showed the best performance for predicting soil pH (R2=0.83, CCC=0.84, RMSE=0.41) and SOM (R2=0.72, CCC=0.68, RMSE=7.36 g/kg), and RF model achieved the best performance in predicting soil TN (R2=0.59, CCC=0.68, RMSE=0.36 g/kg). The spatial distribution of the three soil attributes in the demonstration area showed strong spatial heterogeneity. The overall trends of the spatial distribution of soil pH, SOM and TN predicted by the four models were basically the same, and all of them showed a spatial pattern of high in the northeast and low in the southwest. This study not only provides data support for precision agriculture management in the demonstration area, but also provides valuable reference for selecting prediction methods of digital soil mapping.

    参考文献
    相似文献
    引证文献
引用本文

王奇,王世航,陶勤,刘峰,宋效东,赵明松,徐胜祥.典型黑土区农场尺度土壤属性数字制图方法对比研究[J].土壤,2025,57(2):430-444. WANG Qi, WANG Shihang, TAO Qin, LIU Feng, SONG Xiaodong, ZHAO Mingsong, XU Shengxiang. A Comparative Study of Farm-scale Digital Mapping Methods for Soil Attributes in the Typical Black Soil Region[J]. Soils,2025,57(2):430-444

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-06
  • 最后修改日期:2024-05-16
  • 录用日期:2024-05-17
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码