基于改进UNet模型的土壤CT图像分割方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家重点研发计划项目(2022YFD1500701)和中央高校基本科研业务费专项资金项目(2024RC015)资助。


Soil CT Image Segmentation Based on Improved UNet Method
Author:
Affiliation:

Fund Project:

National Key Research and Development Program (2022YFD1500701); Special Funds for Basic Research Operating Expenses of Central Universities (2023RC047)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    X射线断层扫描(CT)已成为土壤孔隙结构研究的主要手段,而CT图像分割作为其中关键环节,直接关系到孔隙分析的准确性。因传统的图像分割方法精度有限,近年来深度学习技术被广泛应用于土壤CT图像分割中。NAM(Normalization-based attention module)是一种高效的注意力机制,改进了空间注意力和通道注意力子模块的设计,能够增强深度学习模型分割的效果。本研究采用UNet、UNet++、DeepLabV3以及加入了NAM注意力机制的AttentionUNet 4种深度学习模型,对我国东北地区黑土的CT图像进行分割,并同传统分割方法进行比较。结果表明,AttentionUNet在交并比、F1分数、精确度和召回率4个指标的评估值分别达到88.08%、0.96、96.02%、96.64%,精确度相对于UNet和UNet++分别提升了1.46和0.21 个百分比,较传统Watershed方法的精确度和召回率分别提升101.13% 和33.54%。本文提出的AttentionUNet模型可有效提高土壤CT图像分割的效率和精度,为土壤CT图像的孔隙分割提供一种更加高效的方法。

    Abstract:

    X-ray tomography (CT) has become the main means of soil pore structure research, and CT image segmentation, as one of the key links, is directly related to the accuracy of pore analysis. Traditional image segmentation methods have limited accuracy, and in recent years deep learning techniques have been widely used in soil CT image segmentation. NAM (Normalization-based attention module) is an efficient attention mechanism that improves the design of spatial attention and channel attention sub-modules and can enhance the effect of deep learning model segmentation. In this study, four deep learning models, UNet, UNet++, DeepLabV3, and AttentionUNet with the addition of the NAM attention mechanism, were used to segment CT images of northeastern black soil and compared with traditional segmentation methods. The results showed that AttentionUNet achieved evaluation values of 88.08%, 0.96, 96.02%, 96.64% in the four indexes of intersection and concurrency ratio, F1 score, precision, and recall, respectively, and the precision was improved by 1.46 and 0.21 percentage points relative to UNet and UNet++, respectively, and compared with the traditional Watershed method, the precision and recall rate were increased by 101.13% and 33.54%. In conclusion, AttentionUNet model proposed in this paper can effectively improve the efficiency and precision of soil CT image segmentation, and provide a more efficient method for pore segmentation of soil CT images.

    参考文献
    相似文献
    引证文献
引用本文

宋忠林,闫娇,马韫韬,李保国,周虎.基于改进UNet模型的土壤CT图像分割方法[J].土壤,2025,57(3):639-648. SONG Zhonglin, YAN Jiao, MA Yuntao, LI Baoguo, ZHOU Hu. Soil CT Image Segmentation Based on Improved UNet Method[J]. Soils,2025,57(3):639-648

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-14
  • 最后修改日期:2024-11-25
  • 录用日期:2024-12-10
  • 在线发布日期: 2025-07-08
  • 出版日期:
文章二维码