山东滨海鹽土种稻洗鹽效果

苏 世 釗

(山东省农业科学院)

山东省渤海灣地区的 盐漬土,近年来在改良方面采取种稻洗盐与利用相 結合的措施已 获良 好效

果。根据这一情况 1955—1957 年 在广北农坊进行了种稻洗盐的鬼测, 茲将三年来初步結果整理出来, 以供 参考。

一、种稻沸鹽斑的原始情况

种稻洗盐观测地的土壤屬滨海草甸盐土,原系 淡 質黃河沉积物,后受海潮的浸渍而盐化。1950年开荒 前的原始植被除北部生长馬絆及部分稀疏黃須草与蘆 草外,其他均屬光板。开荒后历年曾种植小麦、大麦、 燕麦、苜蓿等作物,皆因盐分过高而未出苗。根据观测 前的土壤勘察,土壤分两种类型:

第一类型土壤,地势 較低,0—50 厘米 为 粉砂粘土,50 厘米以下为粉砂壤土,生长較好的 馬絆草,土壤含盐量在0.124—0.316%(系氮化鈉,以下同);地下水位154—160 厘米,含盐量在23.6—39.4克/升,佔观测地面积35%,代表北部粉砂粘土地区。

第二类型土壤,地势較高,除表层有极薄之粘土层外,全剖面皆为粉砂壤土(粘土层經历年 耕作 已难辯認),多华采光板地,土壤含盐量'0.255—0.835%;地下水位155—186 厘米,含盐量 28.8—54.5 克/升, 佔

現測地面积 65%,代表南部粉砂壤土地区。

由于 历年 来种植失敗的結果, 1955 及 1956 两年連續改种两年水稻。两年的水稻亩产量均在 500 斤左右。1957年全部改回旱作,种植棉花, 获苗 100%, 每亩产籽棉 180 斤以上。

二、种稻洗鹽的效果

1. 土壤脫鹽效果 經三年測定結果,种稻 二年后,砂、粘两种土壤类型在 120 厘米土层以內的盐分,均降至 0.1% 左右,其脫盐率为 47.31—88.54% (見素 1),而在脫盐規律上得出以下四点:

表 1 种稻后土壤脱盐效果

	化鈉及脫盐率		乱 化 鈉(%	脫 盐 率(%)			
割面 利用情況 土壤类型		种 稻 前	种稻一年后	种稻二年后	神稻一年	神稻二年	
	10	0.2533	0.1017	0.0625	59.85	75.23	
第一类型土壤 (粉砂粘土)	2	0.2466	0.1025	0.0783	58.44	68.05	
	9	0.2025	0.0617	0.1067*	-69,53	47.31*	
	À	0.5166	0.0615	0.0592	38.10	83.54	
	平均	0.3048	0.0818	0.0703	73,16	74.81	
	12	0.3003	0.0603	0.1027*	79.92	59.81*	
第二类型土壤, (粉砂壤土)	8	0.2431	0.0757	0.0615	69.49	75,22	
	14	0.1364	0.0710	0.0674	47.95	50.59	
	5	0.5233	0,60757	0.0800*	85.54	84.62*	
	. 7	0.4850	0.1032	0.0686	78.82	85.86	
,	平均	0.3383	0.0773	0.0809	77.18	76.09	

^{*} 較前一年的升高值。

- (1) 在砂粘两种土壤类型中,凡原始含盐量高,脱盐率亦高,洗盐效果明显,其中尤以表土及深层土壤脱盐最明显。
- (2) 种稻第二年脫盐效果則不及第一年显著,砂性土壤各层盐量的变化幅度有显著收縮而趋一致,粘性土壤即变化幅度份大。
- (3) 当土壤盐量小于0.1%时,繼續冲洗則在0.1%的范围內互有升降。
 - (4) 改回旱作后土壤盐分呈上升趋势, 尤以下层

为谏。

种稻洗盐对减少土壤盐分的效果是显著的,但当土壤含盐量达到0.1%时,即可停止种稻而轉旱作,采取綜合性措施,增加有机質及耕作管理機續改良土壤,当收更好效果。

2. 不同土壤質地及层次排列对洗鹽效果的影响 土壤盐分淋洗深度常受到土壤質地輕重及层次排列参 差的影响(見表 2)。

-3± n	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
Te 4	不同土壤質地及层次排列对洗盐效果的影响	

	氯化	的及脫盐率		氯 化 鈉 (%)	脱盐率(%)		
土壤	土壤質地 土层深度(厘)	利用情况	种稻前	种稻一年后	种稻二年后	种稻一年	种稻二年
	粉砂粘土	0-22	0.1275	0.0289	0.0138	77.34	89.25
第一类型	粉砂粘土	22-50	0.2000	0.0819	0.0818	59.15	59.16
土壤	粘壤土	5065	0.2625	0.1207	0.0710	54.02	72.96
(粉砂粘土)	砂壤土	65 - 128	0.4000	0.2131	0.1562	46.72	60.96
	粘砂間层	128 以下	0.5050	0.1351	0.2627*	73.25	47.52
	粉砂壤土	020	0.1810	0.0853	0.0795	53,92	56.08
第二类型	粉砂壤土→細砂壤土	20-65	0.4060	0.0543	0.0716*	86,03	82.52*
土 摄	細砂壤土	65100	0.5460	0.0629	0.0738*	88.48	86.48
(粉砂甕土)	粘砂間层	100—125	0.8760	0.1482	0.0795	83.08	90.92
	砂粘間层	125 以下	0.4800	0.1140	0.0710	76.25	85.21

* 較前一年的升高值。

表2資料,完全吻合土壤脫盐的規律,而就土壤質地及层次排列看出,在包括砂→壤→粘的三种土壤質地中,土質越輕脫盐效果越显著。当土壤含盐量达0.1%时輕質土壤脫盐效果不显,重質土壤則繼續脫盐,因而砂質土壤的冲洗当以土壤含盐量达到0.1%为限,对重質土壤則可进一步淋洗。

表层粘土的厚度直接影响到深层土壤的脱盐效果。从表2看出,当粉砂粘土厚度达50厘米时,则减弱50厘米以下各层土壤的淋洗效果,为加深脱盐层则有延长种稻年限的必要;而砂性土壤的淋洗效果仍以土壤含盐量0.1%为限。当表层土壤含盐量达0.1%时,则不纖續脫盐,其深层土壤仍有脫盐的效果。

3. 排水溝距对洗鹽效果的影响 排水沟間距的 大小,在种稻淋洗第一年,当土壤含盐量较高的条件 下,不論沟距的远近均有同等脱盐的效果,而在淋洗的 第二年,当土壤含盐量达 0.1% 左右时,排水沟距越近 者则脱盐效果越佳,但 盐分的活动仍在 0.1% 以內互 有引降。

第二年的盐分回升的深度则以沟距越近者越小, 。因而种稻洗盐的排水沟間距为城少盐分回升的范围, 应以150米左右为最佳。表3即为其測定結果。

4. 种稻洗鹽与地下水位及其含鹽濃度的关系

种稻的結果使地下水位有所升高,在种植前地下水位为168.5 厘米,种稻一年后为118.5 厘米,上升50 厘米;种稻第二年疏通排水沟后,地下水位为153.5 厘米,較种植前仅高出15 厘米,較种稻一年后尚降低35 厘米,地下水位显著的受到排水沟深浅的影响,而在加深排水沟的条件下,控制地下水位的上升是完全可能的。

种稻后,地下水含盐量一般被稀释8-9倍,最少也在3倍以上,但两种土壤类型的規律是:砂土地下水浓度显出种稻年限越长稀释倍数越大,而粘性土壤,仅第一年最显,以后较差。

三、水稻收割后土壤鹽分及地下水的变化

1. 土壤含鹽量的变化

表 4 所列資料是水稻收割后到当年土地冻結前的 測定結果,資料中明显的反映出不論砂、粘两种土壤类型,或灌区外的土壤,在水稻停水后,土壤盐分均在回升,但灌区內两种土壤在 50 厘米的厚度內土壤含盐量

表3 排水沟間距对脱盐效果的影响

氧化鈉及脫盐率 土层深度			額 化 鈉 (%)							脫盐率
排為距离	点测定	(厘米)	05	5—15	1530	30—50	50—80	80120	平均	(%)
		种稻前	0.3100	0.1300	0.1900	0.3200	0.3500	0.4000	0.2533	
	40 米	种稻一年后	0.0710	0.0710	0.0840	0.0852	0.0568	0.0426	0.1017	59.85
	Ì	种稻二年后	0.0770*	0.0600	0.0720	0.0430	0.0576*	მ.0660≉	0.0625	75.33
300 米		种稻前	0.2400	0.2300	0.1600	0.2900	0.2900	0.2700	0.2466	~~
-	150 米	种稻一年后	0.0852	0.0994	0.1420	0.1180	0.0284	0.1420	0.1025	58.44
		种稻二年后	0.1426*	0.0994	0.0710	0.0710	0.0327*	0.0568	0.0788	68.05 🕳
		种稻前	0.0870	0.0580	0.1700	0.2600	0.2300	.0.4100	0.2025	
	250 米	种稻一年后	0.0568	0.0568	0.0994	0.0426	0.0579	0.0568	0.0617	69.53
•	,	种稻二年后	0.0710*	0.0710*	0.0852	0.0710*	0.1140*	0.228*	0.1067*	47.31

^{*} 駿前一年的升高值。

表 4 不同土壤含盐量的变化

上				氣	伦	鈉	(%)		
		2	6	13	19	25	31	38	44
	0-5	0.0853	0.0852	0.0899*	0.0865*	0.0426	0.1056*	0.1103*	0.0710
第一类型	5—15	0.0615	0.0663*	0.0663*	0.0615	0.0473	0.1245*	-0.0805*	0.0426
土 壤	15—30	0.0521	0.0321	0.0321	0.0568*	0.0473	0.0710*	0.0852*	0.0426
(粉砂粘土)	30—50	0.0473	0.0635*	0.0663*	0.0790*	0.0521*	0.0867*	0.0716*	0.0663*
•	平均	0.0616	0.0618*	0.0637*	0.0710*	0.0473	0.9696*	0.0868	0.0556
	0—5	0.0426	0.0568*	0.426	0.0284	0.0284	0.0568*	0.0426	0.0426
第二类型	5—15	0.0426	0.0568*	. 0.0568*	0.0426	0.426	0.0566*	0.0426	0:0568*
土、堰	15—30	0.0426	0.0426	0.0568	0.0284	0.0284	0.0710	0.0568	0.0568
(粉砂麋土)	30—50	0.0284	0.0142	0.0716*	0.0426*	0.0284	0.0852*	0.0568*	0.0426*
	平均	0.0391	0.0426*	0.0568*	0.0355	0.0319	0.0675*	0.0497*	0.0497*
	0—5	0.2130	0.0113	0.1280	0.1420	0.0710	0.0710	0.3410*	0.1280
灌区外	5—15	0.1700	0.0113	0.1840*	0.1700	0.0994	0.0852	0.1946*	0.1180
150 米	15—30	0.2130	0.185	0.4400*	0.1990	0.1280 /	0.1180	0,1890	0.1180
測 点	3050	0.1190	0.2410*	0.1990*	0.1700*	0.1706*	0.1420*	0.2136*	0.1890*
	平均	0.1787	0.1122	0.2287*	0.1702	0.1171	0.1041	0.2342*	0.1383

^{*} 以第二日为基数的上升值。

均未超出 0.1%,粉砂粘土类型土壤的盐分 变化 幅度 为 0.0473—0.0969%,粉砂壤土类型土壤的盐分变化 幅度为 0.0319—0.0675%,灌区外土壤的盐分变化幅 度受到原始盐量较高的影响,幅度 較大,为 0.1041—0.2342%,因而水稻收割后极早耕翻土地,减少蒸发,抑制盐分的回升是具有头等重要意义的。

2. 地下水位的变化

(1) 灌区內地下水位的变化:水稻始灌后,地下水位迅速上升而与地面淹水相接,随即保持这一高程,停灌后水位开始下降,砂性土壤于38日后已达原始水位,粘性土壤于48日后(土壤封冻前)方接近原始水位。

种稻洗盐在排水条件良好的情况下,于 当年冬季 土壤冻結前即降至原始水位,水稻收割后,当地下水位 較高时进行耕耙防止返盐的措施,对减輕盐分的国升 有重要的意义。

(2) 灌区外地下水位的变化:灌区外地下水位的变化除受灌区地下水流直接影响外, 尚受到自然因素的影响。灌区始灌后区外水位逐日上升, 40 日后升高46厘米, 后期由于自然降雨的影响,于149 日后升至地表;停灌后水位即开始下降, 48 日后(土壤封冻前)尚较原始水位高出59 厘米。

种稻洗盐提高了在150米以內的地下水位,而其 对邻近地块的土壤也有一定的影响,因而加强排水系 統的管理,或集中栽培水稻,以防邻近地块的返盐是重 要的問題。

3. 地下水濃度的变化 地下水浓度經 灌 水后即被稀释,77日后是其 最 淡期(粘土为 0.98 克/升,砂土 0.93 克/升,灌区外 0.26 克/升),往后即逐 日上升。停灌后上升加速,至土壤封冻前与原始浓度相差甚远。

地下水变化显出灌水后及淹水期間浓度被高度的稀释,达一定浓度后即轉而上升,在升高的过程中,因

受到原始浓度的影响,呈現出原始浓度高的在上升过程中仍表現高的浓度,但在较低的浓度下,多前的返盐将无大的危害。

四、結語

山东滨海地区的盐漬土改良, 在利用种植水稻洗除土壤盐分上, 經三年的測定結果, 已被証实, 能大量的减輕土壤盐分, 并能获得高額的水稻产量, 这是一种改良与利用相接合的良好措施。

在打漁张灌区开发后的良好排灌系統下,当可减輕邻近土地返盐,这为灌区的土地利用及改制提供了积极的因素。在目前灌区的灌排系統完整的条件下,大力发展水稻,将轉为水旱输作已完全可能。轉旱作后在良好而及时的土地管理措施下,配合高度的栽培技术,不仅可获得高額的产量,更可防止土壤返盐,这为山东滨海盐土改良提出了良好的途径。但随改制而来的农业、水利、土壤、耕作等方面将提出大量的新的研究項目,因而进一步加强研究,达到农业的大丰收,已成为目前科学研究工作的新的任务。

(上接第37頁) 这些农諺,也会給我們今后的土壤改 良工作提出广闊的前途。如:

- (1) 擅土改良——"黑見黃,女見娘","黑土来到 黃土地好比妳妹走亲戚"。隴东黃土高原的壚土都有黃 土所复盖,黃土性热,发小苗,后劲小; 爐土性凉,发老 苗,后劲大。在自然状况下,两者有优点五科作用,如 果翻上来使黑土(壚土)与黄土混合,互补作用更大,因 而就有这样的农諺出現。根据这个农諺就給我們提供 出了深耕改土的有力根据,产生出"黃土塬变黑土塬" 的土壤改良規划。
- (2) 高山黑土改良——"黑土喜耕,黄土喜粪"。 这条农諺提供給我們的資料是:要提高高山黑土的肥力,耕地是中心措施。因为黑土的腐殖質含量很高,耕作能够促进有机質的分解,使土壤变肥。黄土的磨殖質含量甚低,施肥是改良土壤的第一措施,耕作就成为从愿措施了。
- (3) 黄綿土改良——"有水无肥也丰收"。只其能够改善土壤水分条件,土壤肥力即能馬上提高。
- (4) 夹沙地改良——"一旦夹沙倒在上,就会变成 米粮仓","宁叫沙压土,不叫土压沙"。意即把夹沙层

- 掏除,盖在土壤表面,变为沙盖土,即能大大提高土壤 肥力,保証丰收,"沙盖土,笑面虎,又肯长,又不僵"。
- (5) 碱潮地改良——"只泡不挖,等于白搭"。浓 諺指明改良碱潮地,必須采取冲洗盐 分 和挖沟排水相 互結合的措施,始为有效。只靠泡洗,并不能彻底改变 碱潮地的不良特性。
- (6) 黑趴土改良——"趴(泡)土上山灰,大黄、洋 芋一大堆"。山灰,即烧土,因为趴土处于高寒区,土性凉,氦素丰富,增施磷鉀肥(山灰)就能提高土壤肥力,增加农作物的产量。
- (7) 大黄土改良——"洪水积满堂, 秋后多打粮"、 大黄土易受流水冲刷, 只要能够拦蓄洪水, 就能增产。
- (8) 黄胶泥改良——"胶泥土, 粘性大, 要想长出好庄稼, 多上小灰(草木灰) 頂呱呱", "宁可干排一遍, 不可湿排十遍"。

类似上述土壤改良的农諺也是很多的。这些农諺 都能給我們指出簡而易行、切实可靠的土壤改良方向。 根据这个方向去进行土壤改良的研究,可收多、快、好、 省之功。当然,在农諺之外,还有許多羣众改良土壤的 經驗也須要进行調查和研究。

- * 本刊因篇幅所限,有关"十年征文"已选用稿,今后将陆额发表。
- * 周文白同志: 請速将詳細地址見告以, 便联系。
- * 本刊第八期第一頁第十一行"土壤的历史发展控制着人类活动的影响", 应改为"土壤的历史发展影响着人类的活动"。