年来,每亩地增产粮食323.3斤至384.3斤,比对照增产21.8—26.3%。

上述试验、示范试种结果表明, 麦肥间种大有作为, 是一项省工易行增产粮食的好措施。

表 4

翻压草木樨对土壤容重孔隙度的影响

•.•.				土壤 深度 (厘米)	容	重(克	/厘米 ³)	孔	酿 度	(%)		
地			点	处理	0-10 10-20 20-30	20—30	0—10	10-20	20-30			
大	本	····	臥	对 照	1.18	1.27	1.25	52.8	49.3	50.2		
人	4	^	BV	翻压草木樨	0.96	1.09	1.16	61.6	56.4	53.6		
	大本三!	_	7 1	队	对 照	1.09	1.10	1,00	56.6	56.2	59.9	
^		=	PΛ	翻压草木樨	0.98	1.10	1.09	60.7	56.2	56.6		
联	咲 合	六	R1	R1	、队	对 照	0.95	1.16	1.38	62.1	53.0	44.8
400	Ħ	/\	Þζ	翻压草木樨	0.96	0.94	1.07	61.6	62.5	57.1		
大	众	五	队	对 照	1,12	1.26	1.34	55.2	49.7	46.3		
Λ.	从	л.	ÞΛ	翻压草木樨	0.98	1.01	1.10	60.7	59.9	55.7		
大		۔۔۔	71	对 照	0.98	0.97	1.03	60.8	61.1	58.1		
人	众	六	队	翻压草木樨	0.96	0.93	0.86	61.6	62.8	65.8		
	本	=	趴	对 照	1.03	1.14	1.03	58.8	54.5	56.8		
大 2	4	_	趴	翻压草木椰	0.97	0.96	1.12	61,1	61.8	55.4		

分析方法

钾电极的试制与植株全钾和组织液中含钾量的测定

宣家祥 钱菊芳

(中国科学院南京土壤研究所)

植株中含钾量的测定,习用三酸消化一火焰光度 法或水浸提四苯硼钾比浊法测定。火焰光度法仪器昂贵,不易普及。四苯硼钾法易受温度等条件影响其精度,故也有其不足之处。自1969年以来,钾离子选择电极在分析化学中的应用日益获得人们的重视(1),但对于植株中含钾量的分析,至今还未见国内外有这方面的报道。我们应用国产原料制成了中性载体型PVC膜钾离子选择电极,本文报道这种电板的制作与在植株分析中的应用。

一、中性载体型PVC膜钾电极的 制造技术和性能

钾敏感PVC薄膜是由29%的浆氯乙烯粉末、1%

的双苯基-18-冠-6(电活性物质)和70%的邻硝基苯辛醛(增塑剂)共溶于3—5毫升四氢呋喃中,充分溶解、混匀、自然挥发成膜,而后于180°C电炉中灼烧数分钟,即得PVC敏感膜。

电极外管采用聚氮乙烯管或有机玻璃管。将敏感膜用打孔器打成与电极外管相匹配的小圆片,用聚氯乙烯胶将其胶牢,待干后,灌入数毫升内 溶液(AgCl饱和的0.1NKCl溶液),并插进一支 Ag/AgCl电极,总装成钾电极。而后使 PVC 钾电极和饱和甘汞电极组成下列测量电池:

钾电极 | 试液 | 1NNH_4NO_3 盐桥 | 饱和 |] 汞电极 测得电极的性能如下:

1. 电极的线性 在 10⁻² M-10⁻⁵ M 溶液中电极

函数呈线性关系,如图1所示。

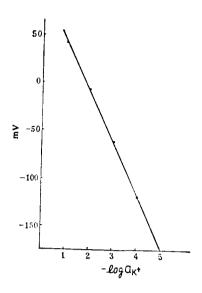


图 1 电极的线性

2. 电极的选择性

3. 电极的工作寿命在半年以上。

二、植株含钾量的测定方法

1. 植株全钾量的测定 选取代表性的植株若干,于80°C烘箱中烘干,磨碎、通过1毫米筛孔,贮于广口瓶放在干燥器中备用。称取此样品500毫克,用移液管加入50毫升0.1NHC1溶液,侵提过夜。或取新鲜植株两份,一份测定水分,一份称鲜重2克,立即剪碎,加入0.1NHC1浸提过夜。次日过滤,吸取滤液25毫升定容至100毫升。吸取稀释液10毫升,加两滴1:1的三乙醇胺溶液,调pH至7—8,定容至50毫升,测得E₁,而后用移液管在此溶液中添加0.1000MKCI标准溶液0.5毫升,测得E₂,按标准添加法公式:

$$C_0 (K,ppm) = \frac{39.1}{(antilog - \frac{\Delta E}{S} - 1)} \cdots (1)$$

S—电极实测斜率△E=E₁-E₂ 计算得出样液的含钾量(K, ppm),再换算成K₂O%。 K%=K(ppm)×0.2·····(2) K₂O%=K%×1.205······(3)

离子 种 类	K+	NH4 ⁺	Li*	Na ⁺	Ca++	Mg++	H+
K _{k·m}	1.0	2.7×10 ⁻²	4.4×10 ⁻³	1.2×10 ⁻²	1.8 × 10-4	1.5 × 10 ⁻⁴	9.6 × 10 ⁻¹

2. 组织汁液中含钾量的测定 根据营养诊断的需要选取生长的植株叶片或叶鞘等部分,剪碎压榨出鲜汁0.5毫升左右,插入小型钾电极与带盐桥的甘汞参比电极,接通仪器,数分钟后读取电位值(mV),而后在标准曲线上查得其含钾量(K,ppm)。标准曲线系用半对数纸以电位值(mV)对含钾量(K,ppm)制成。

三、测定结果

1. 钾电极的再现性

表 1 钾电极在样液中的再现性

样品	测定号	E(mV)	E平均值(x)	标准设(Sk)		
	1	- 93.3				
大麦	2	- 92.8				
穗	3	- 92.9				
子 的	4	- 92.4	- 92.9	± 0.11		
漫	5	- 92.8				
大麦穗子的浸提液	6	- 93.0				
	7	- 93.2				

由表1可见,电极在同一样液的数份重复测定中, 再现性良好,其标准差在±0.11mV左右。

2. 电极法的稳定性 为了考察电极法在植株分析中应用的可能性,我们取油菜茎叶、大麦茎干与穗子三种标本在五个不同时间里进行测定(表2)。

表 2 电极法的稳定性

测定时间	K ₂ O%*						
en ve en lei	大麦茎干	大麦穗子	油菜茎叶				
77年3月22日	1.13	0.44	1.73				
3月30日	1.05	0.37	1.61				
4月2日	0.93	0.47	1.63				
4月4日	1.00	0.35	1.61				
4月5日	0.92	0.36	1.66				

* 植株用水没提过夜

由表 2 可见, 电极法 的 稳 定 性 尚 好, 平 均 在 ±0.05%左右波动,符合例行分析的要求。 3. 标准曲线法与标准添加法的比较 用电 极 法 测定含钾量有两种方法,一为标准曲线法,另一为标准添加法。

由表 3 可见,标准添加法与火焰光度法的结果比较吻合,而标准曲线法的结果偏低,所以在植株全钾测定中,我们选用了标准添加法。

表 3 标准添加法和标准曲线法的比较

**	àrit:	电极法(火焰光度法		
样	液	标准曲线法	标准添加法	(K ₂ O%)	
水	稻	0.89	1.05	1.09	
大麦茎	Ŧ	0.97	1.34	1.38	
大麦穗	子	0.45	0.57	0.61	
油	菜	1.80	2.25	2.15	
苕	子	2.21	2.78	2.64	
红 花	草	1.62	1.91	1.71	
绿	肥	1.33	1.75	1.55	

4. 电极法的误差:

由表 4 可见,在水浸提液中,电极法与火焰光度法相比,其平均误差约±0.12%,在 0.1N 盐酸浸提液中为±0.095%,而在三酸消化液中为 ±0.03%。由于三酸消化液中残存下来的主要是1~2毫升硫酸,这样看来以硫酸固定离子强度似可提高测量精度。

5. 用钾电极测定组织汁液中的含钾量 钾电 极在植株营养诊断中的应用不仅具有简单、快速、适于野外使用的特点,而且更能反映田间植株的生长状况 (表5)。

由表5可见,无论对于水稻、小麦或棉花,施钾 处理与未施钾的对照相比,植株体内含钾量均有明显 的增加,而这种变化采用六硝基二苯胺钾试纸法有时 是区分不开来的,如表5中棉花的红叶片与黄叶片。

四、讨 论

1. 提取剂的选择 钾在植物体内主要以离子 态存在,多吸附在胶体表面或呈水溶性钾盐,故可用水或稀酸浸提。我所钾肥组采用 0.5NHC1 作为植株全钾的提取剂,浙农大则用热水浸提*,我们比较了水和 0.1N盐酸两种提取剂,并以三酸 $(HNO_3-H_2SO_4-HC1O_4)$ 消化法相对照。由表 4 可见,以 0.1NHC1 作提取剂时与三酸消化法的结果较为接近,而且 0.1 NHC1 提取液的 pH 较 0.5NHC1 提取液要高,更适于电极测量。

以热水浸提时往往含有大量的胶体,不便过滤,故以0.1NHC!作提取剂较为合适。

表4 电极法与火焰光度法对比

			i	植	株	含	钾	量	(K ₂ O%))	
样	品	水	浸	提	0.1	N HCl 液	浸提		三酸消化	. 液	
		电极法	电极法	火焰光 度 法	误差	电极法	火焰光 度 法	误 差	电极法	火焰光度法	误 2
水	稻	1.04	1.04	0	1.05	1.09	-0.04	1.10	1.10	0	
大麦	茎干	1.13	1.30	-0.17	1.34	1.38	~0.04	_	- 1	_	
大麦	穆子	0.46	0.52	-0.06	0.57	0.61	-0.04	0.69	0.64	+0.04	
油	莱	1.73	1.99	-0.26	2,25	2.15	+0.10	2.11	2.07	+0.04	
苕	子	2.69	2.61	+0.08	2.78	2.64	+0.14	2.73	2.76	-0.03	
红花	草	1.71	1.52	+0.19	1,91	1.71	+0.20		1		
绿	肥	1.68	1.48	+0.20	1.75	1.55	+0.20				
平均	误 差		·	±0.14		·	±0.11		<u></u>	± 0.03	

^{*} 浙江农业大学农业化学教研组,植物营养和肥料 (下册),5-21页,1976。(内部资料)

		含钾量							伊 量
水稻试验处理	取样部位			取样部位	(K,ppm)			(K,ppm)	
		(K,ppm)	验处理		电极法	钾试纸法	样品	电极法	钾试纸法
N ₂	叶 鞘	628	对照 (1)	剑叶下	3910	3000	10	3150	2500—300 0
N ₂ K		1490	施 钾	第二叶鞘	4496	3000 ⁺	12	2800	>2000
未施钾	新叶下	2420	对照 (2)	穆下第三节	2358	2500-3000	黄叶片	760	750以下
施伊	2—3叶	2960	施鉀		4926	3000 ⁺	红叶片	510	750以下

强度不同以及蛋白质含显不同之故。为了 克 服 此 困 难,我们曾试用活度系数法来解决这个问题,但未获成功,所以有待进一步的试验解决。尽管如此,但由表 5 看,本法较常用的钾试纸半定量分级法精确得多,故目前来看,本法仍不失为一种较好的野 外 速 测 方法。

参考文献

(1) Frant, M. S. and Ross, J. W., Science, 167,987— 988, 1970.

油液虹吸联通管法测定水稻田渗漏量

江苏农学院土壤教研组 马同生 (南京晚庄师范)

水稻田在灌溉条件良好的情况下,适当的渗漏能促进水田土壤中空气的更新,排除部分还原性物质,有利于土壤中养分的输送与水稻根系的生长发育,容易发挥栽培管理、施肥等措施的作用,获得高产。因此,渗漏的情况往往能作为水田土壤优劣的反映。

水田渗漏量测定是研究水田土壤的手段之一,但是一直未能获得快速、简便、精确地反映大田客观真实情况的测定仪器和方法。作者研试了"虹吸联通管法"测定水田渗漏,摆脱了运用渗漏简局部测定的约束,直接测定水田整个田块的渗漏,所用仪器设计简单、方法简便快速,能反映大田的实际。

一、方法原理

油液虹吸联通管法测定水田渗漏量,是将一支有刻度(毫升)的和一支无刻度的玻璃管用橡皮管联接,注入水和油做成虹吸联通管,一端置于水田的水层中,另一端置于盛有水的容器A内(图1),由于水田水面和容器A中的水面均受着相等的大气压力,两者水面永远相平。经过一定的(较短)时间,假若水田由于渗漏,水面下降1毫米,则容器A中的水通过虹吸联通

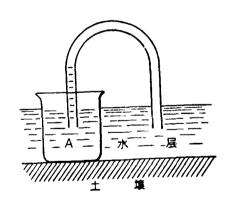


图 1 虹吸联通管示意图

管流入大田,保持水面相平,因此容器A中水面亦同 样要下降1毫米。

设: 容器A的截面积(S)为n×10厘米² 由于水田渗漏容器A中水面相应降低高度(h)1 毫米,其所减少水的体积(V)应为:

 $V = h \times S = 0.1$ 厘米 $\times n \times 10$ 厘米 $^2 = n$ 厘米 3 容器 A 中减少 1 毫米 高度的 水层,是极难精确直