滨海粘质盐土草滩地开垦改良利用*

荆 素 贞

(江苏省国营云台农场)

一、滨海粘质盐渍土的环境特点

滨海粘质盐土主要分布在江苏省响水、灌云至连云港沿海一带。气候属于淮河流域和华北过渡地带。地势平坦,地面真高约在1.8—3.6米之间。西部略高于东部,呈向海岸倾斜的缓坡地貌,常受海水浸渍。系新海湾泻湖相沉积母质,后为黄河沉积物复盖,呈强石灰性反应。

滨海淤泥刚出露地表时为光板,然后生长自然植被,植被演替如下:

随自然脱盐过程表土层增厚,有机质含量增加(2—4%)。由于有机物的团聚作用,形成一定的块状结构,有利于水份的渗透,加速自然淋盐过程。逐渐发展到 猿毛、芦苇,进入茅草群落。

本区原是一片草滩荒地。1950年整治沂河,疏浚了河道,停止了海水泛滥漫溢后,相继建立了东辛,云台,五图河等大型农场。垦植过程中,兴建了以排为主,灌排配套的水利系统,解决了地面积水和地下水的去路。随着开垦利用,土体逐层离盐,地下水逐步谈化,土壤逐渐演化为不同盐渍度的耕种草甸土。

江苏省云台农场属滨海粘质盐渍土,1952年建场时,氯盐含量<0.20%的盐土仅占耕地面积21.8%,而>0.40%的盐土却占49.6%。到1980年一米土体氯

盐加权平均值<0.15%的盐土占耕地面积的51.17%,而>0.40%的盐土仅占耕地面积的6.69%。到1982年粮豆总产826.94万斤,是1955年建场初期粮豆总产(58.38万斤)的14.16倍。随着农业生产的发展,土壤不断地脱盐熟化(表1)。

二、改良利用的途径

总结三十年来的生产实践,总的说,土壤是向脱 盐熟化方向发展。由于措施不同,土壤发生了不同的 变化。现分述如下:

1. 旱耕条件下土壤向脱盐熟化方向发展 这一类土壤主要分布在地面真高2.9—3.4米之间的西部地区及烧香河畔,地势较高,星前植被以茅草为主,夹杂盐蒿、碱蓬。1952年建场初期即进行开垦,农田基本建设标准较高。建成以排为主,能灌能排,灌排分开,四沟配套的大型机械化条田(干排深3.5—4米),为麦豆(绿肥田菁)棉花三年四熟制。

这一类土壤由于有良好的排水条件,通过伏耕蓄淡淋盐,土壤逐渐淡化。地下水水位下降,水质淡化。 开垦初期一米土体平均氯盐为0.33—0.53%,到1980 年减少到<0.05%。地下水水位由60厘米左右下降到1.2—1.3米,同时地下水矿化度由24—28克/升降低到2—4克/升。随着开垦年代的增加,盐分减少,耕层不断地熟化,有机质稳定在1.5—2.0%(衰2)。土壤的理化性状和生产性能得到明显改善,成为农场的

表 1 云 台 农 场 土 壤 盐 份 的 演 变

氟	盐 %	<0.05	0.06-0.15	0.16-0.25	0.26-0.30	0.31-0.40	>0.40
各级盐分	1952(建场勘测)			21.8	_	28.6	49.6
的土壤占	1955(建场勘测)	_	11.7	14.6	20.5	19.7	33.5
耕地面积	1963(土壤普查)	8,5	10.5	8.7	10.3	27.5	34.5
%	1980(土壤許査)	19,28	31.89	18.57	5.48	18.09	6.69

^{*} 本文承王遵亲先生斧正,特此致谢。

		化 度 (克/升)	4.0	8 4	72	89	
	地 水下 位	(米屋)	133	62	83	75	
	載 劺	%	0.05	0.08	0.14 0.16 0.14 0.40	0.16 0.20 0.40 0.52	
版	♠	%	0.096 0.095 0.091 0.096	0.154 0.162 0.336	0,165 0,166 0,184 0,455	0.210 0.231 0.496 0.591	
#1	Hd		7.5	8 8 8 8	8 8 9 1	8.3	
理化	多 選 任 站 粒 (<0.01歲米)	%	75.72 80.00 70.23 80.50	72.95	82.68 80.38 82.51 83.21	90,52 96,30 93,89	
面的的	孔 腹 :	₩ %	50.1	41.3	47.3	48.1	
軍	茶	(2) 厘米3)	1,33	1.36	. 1.38	1,39	
十 集	速效器	(mdd)	1.0	2.5	10.0	20.0	
副	全 麻 (P ₂ O ₅)	%	0,130	0,135	0,148	0.096	
₩	製 華 氮	(mdd)	57.4	4 . 8 8 . 5 5	54.6	45.0	
农格	☆	%	0.147	0.146	0.132	0.138	
4	有机质	%	1,74	1.40	1.38	1.66	
ıþ	深	(厘米)	0 —24 24—32 32—141 141以下	0 —16 16—24 24—80 80 以下	0 —19 19—29 29—53 53 U. F	0—15 15—22.5 22.5—90 90以下	
	置	×	A w B C	CBP	CBB	CBB	
	承	(2)	養本脱盐土	碱化轻盐土	碱化中盐土	阿 税 +i	
	+1	**					
录	記 恒	ゼ	四 排 中 数 地	た サ イ カ 田	人 非 中 名 田	拉河 四海 大 東 中 中	

注,速效轉用0,5M碳酸氢钠浸提,用钼兰比色法测定。

基本农田。小麦单产可达500—600斤,皮棉单产100—120斤。

但应该指出,这一类土壤开垦后,有效磷迅速下降,从初垦时的32ppm减少到3—5ppm(1980年测定)。 为确保土壤稳产高产,合理施用磷肥是一个很重要的 问题。

2. 种稻淋盐条件下土壤的演化 这类土壤 种稻 前都系撩荒地,土壤含盐量高,一米土体氯盐含量为0.7—1.0%,早作物不能立苗。在有淡水水源条件下,建立独立完善的干河,排沟,条沟,中心沟四沟配套灌排分开的机械化农田。通过淡水泡洗3—4次,当0—20厘米氯盐降至0.2%左右开始种稻。种稻期间,灌水要迅速及时,浅水勤换,排水要彻底。这样种稻三、五年后土体自上而下逐渐淡化,尤以表层40厘米脱盐比较迅速。例如三分场家东大荒田,1969年前为一片虾须,盐蒿。0—40厘米土层中氯盐含量为0.456%,1970年兴修水利后引淡水种稻到1973年,氯盐降到0.206%,平均年脱盐率18.1%。水稻生长良好,单产400—500斤。

由于水稻生长期内田面淹水,抬高了地下水位。影响40厘米以下土层的脱盐,致使种稻十年后40—60厘

米土层盐份仍达0.65%,地下水矿化度为32.8克/升。 为此,应该考虑40厘米土层盐份降到0.20%左右,旱 作物可以立苗时立即回旱。同时按旱作标准加深排水 沟网,进一步淋洗心、底土盐份,把地下水降低到1 米以下。此后应结合种植田菁绿肥,培肥地力,改善 土壤理化性状。

3. 土壤向脱盐碱化方向发展 这类土壤主要分布在地面真高2.6—2.8米的一,二分场。地势低洼,排水困难。星前植被以芦苇、三棱草为主,夹杂部分碱蓬,为群众放牧之地。开垦时兴修了大型条田,开挖了灌排水渠,但标准不高。排沟深度60—80厘米,条沟深仅40—60厘米,起不到排水淋盐,淡化地下水作用。

初垦时以早改为主,1958年后改种水稻,耕作租放,抬高了地下水位,促进了盐份聚积,因此产量低而不稳。1978年后疏浚了条排沟,加深了云善河,改善了排水出路,调整了作物布局,逐步回早为麦、豆(绿肥田菁)和棉花轮作。如七排沟区的1700余亩土地,1952年垦前60厘米平均氯盐为0.653%,开垦时种早作三年到1955年,氯盐减少到0.373%,平均年脱盐率14.3%。1958年改种水稻后,由于条沟淤浅,排水不

表 3 云台农场土壤可溶盐离子组成

(单	位:	毫	克	当	量/	100	克	土))
----	----	---	---	---	----	-----	---	----	---

地 点	层 次	年 代	CO-3	HCO3-	Cl-	so-4	阴 离 子总 和	Ca++	Mg**	K+ + Na
223	Α	1965	0.0	1.15	0.85	0.31	2.31	0.37	0.06	1.88
排		1980	0.0	0.65	0.59	0.48	1.72	0.58	0.21	0.93
妆	В	1965	0.0	0.98	1.05	0.65	2,68	0.28	0.05	2.35
九	В	1980	0.0	0.58	0.80	0.32	1.70	0.23	0.21	1.26
号	С	1965	0.0	1.11	1.75	0.49	3.35	0.39	0.03	2.93
地		1980	0.0	0.55	0.98	0.18	1.71	0.21	0.18	1.32
九排	Α	1965	0.0	1.04	1.90	0.40	3,34	0.26	0.05	3.03
		1980	0 12	1.38	1.38	0.35	3.23	0.35	0.35	2,53
沟	В	1965	0.11	0.90	3.40	1.50	5,91	0.27	0.03	5.61
八		1980	0.0	1,58	1.38	0.35	3,31	0.35	0.35	2.61
号	С	1965	0.09	0.99	5.80	1.30	8,18	0.22	0.03	7.93
地		1980	0.00	1.24	6.98	0.30	8,52	0.30	0.30	7.92
, , ,	A	1965	0.0	1.01	3.60	0.20	4.81	0.26	0.26	4.29
八排沟十号地		1980	0.16	1.62	1.17	0.40	3.35	0.25	0.40	2.70
	В	1965	0.0	0.85	7.55	0.73	9.13	0.27	0.02	8.84
		1980	0.0	1.58	2.34	0.10	4.02	0.40	0.10	3.52
	С	1965	0.0	0.74	16.67	0.10	17.60	0.29	0.07	17.24
		1980	0.0	0.78	11.49	_	12.27	0.30		11,97

尿素水解中HN,对 根系的毒害

罗质超 唐永良 刘芷宇

(中国科学院南京土壤研究所)

尿素是农民欢迎的一种氮肥。但在施用过程中存在转化为气态NH3或随后出现亚硝酸盐对作物出苗和生长产生毒害的问题。本文主要研究尿素分解过程中所产生HN3的毒害。

受毒害的植株,叶片有似缺钾的褐斑、焦枯,严重 时死苗等症状。根系生长明显受抑制,无根毛,不长新根,严重时根尖呈褐色或坏死。

当气态NH3浓度为5 微克/厘米3时,作物根系就受到明显伤害,达30微克时,经6小时处理,作物的根、芽都不能生长,即使取消NH3作用也不能恢复。但是在低浓度时,取消NH3作用后置于正常环境中能逐渐恢复生长。水稻对NH3的抗逆性比小麦要强。同时受害植株体内钾紊出现外溢,如水稻,小麦幼苗在NH3环境中经6小时处理后,发现体内K⁺和游离氨基酸有较明显的渗出。

在本试验条件下,不论是石灰性土壤或酸性土壤, 尿素分解过程中施肥区土壤pH都升高,这就为尿素分解后生成的 NH_4 *向 NH_3 转化提供了条件。在石灰性 土壤上种小麦,表施尿素 200 ppm(N)或每亩条 施25 斤致使根系受到伤害,在分蘖期和拔节期 追 施 尿素 200 ppm(N),经10天左右小麦根系的干物重与对照相比反而有减少的趋势。而在酸性土壤上只在缺钾条件下观察到这一现象。可以认为受NH3毒害的植株与钾素营养失调有一定的关系。

根据试验结果,提出如下措施,对防止尿素毒害 是有效的。

- 1. 尿素作种肥或基肥施用时,应采取施后复土再播种,使种子与尿素相隔一定距离,忌用尿素拌种下地。
- 2。 尿素用量过大,特别是条施或其它方式集中施用时,可能造成施肥区局部pH显著升高而产生 NH₃的毒害。一般追施量应低于20斤/亩。
- 3. 当作物根系尚未发育良好或在移栽期,施用尿素最易造成伤害。所以,尿素作追肥时,应在根系生长良好和吸收能力较强时施用为好。这有利于防止伤根,也利于提高尿素氮的利用率。
- 4. 尿素宜溶水施用或施后浇水,可以利用土壤对 尿素吸附能力较弱的特性,使尿素随水向土壤下层移 动而达到尿素深施的目的。试验结果表明,溶水施用 3 天内尿素氮以NH₃途径损失的氮明显少于 尿 素表施。
- 5. 泥炭有缓冲土壤pH的作用, 尿素加泥炭处理的土壤pH变化比单施尿素的低0.5个单位, 表明加泥炭有利于防止NH3逸失和毒害。此外, 受害的植株地上部分含钾量降低, 在缺钾条件下施用尿素毒害效应更为明显。因此, 施用尿素的同时, 应考虑到其它养分的配合施用。

畅,土体中下层盐份无法排除,60厘米土层内氯盐始 终徘徊在0.3%左右。而土壤碱性日益增强,土壤总碱 度绝对含量增加,1980年测定土壤的总碱度为1.78毫克当量/100克土,较1965年总碱度(1.17毫克当量/100克土)绝对值增加0.61毫克当量/100克土,相对增加 34.3%。CO₃⁻+HCO₃⁻之和是Ca⁺⁺+Mg⁺⁺之和的 2.7倍(表2,3),出现了残余碳酸钠。同时阳离子中一价 高子与二价离子之比高达4.15—11.97。土壤于时板结 龟裂,湿时泥泞分散,呈强碱性反应,pH达9.0左右。 旱作物常因返碱缺苗断垄,粮食单产仅100—200斤。 土壤向脱盐碱化方向发展。

三、结 语

1。 滨海粘质盐渍土改良利用, 首先建设以 排 为

主,灌排分开,四沟配套的高标准水利系统。同时培肥地力,实行早改为主的粮肥棉轮作。并应注意土壤 氮、磷、钾元素的协调,促使土壤向脱盐熟化方向发展。

- 2. 种稻淋盐是改良盐土的先行措施。当土壤表层 谈化到小于0.2%盐份时,早作物可以立苗即需回阜, 并加深水利设施以利进一步淋洗心、底土盐份,降低 地下水位,种植田蓍绿肥,实行水旱轮作。
- 3。对垦前系湿生性植被为主的低洼盐渍土,垦植过程中应以排除盐碱为前题,切实开挖排水沟,降低地下水位。严防钠质盐类在土体内作上下反复运动而使土壤碱化。