拨 土 种 麦 镇 压 对 改 土 增 产 的 效 果

胡定字

(西北农学院)

陕西关中地区农民群众在争取小麦高产中运用镇 压措施有着丰富的经验。但是,镇压的改土、增产作 用在科学上的意义如何?以及怎样在生产实践中运用 才能发挥其优势?针对以上问题,我们进行了两年的 试验研究,取得一些结果,现整理如下。

一、供试土壤的基本性质和试验方法

试验是在我院农场的农作一站(武功头道填)和农作二站(武功二道填)进行,土壤属关中塔土类。武功头道填即渭河的第三级阶地,为红油土,熟化层较薄,有机质较少,颜色较浅,粘性较重。武功二道填是渭

河的第二级阶地,为黑油土,由于长期灌溉和耕作栽培的作用,熟化层较厚,有机质较高,颜色发黑,质地属中壤至重壤(表1)。

试验设小区进行,分冬压(小麦越冬期镇压);冬 压加春压(小麦返青期镇压);小区面积0.1亩,重复两 次。镇压工具为石滚,长182厘米,重500公斤,单位 面积受力约200—210克/厘米²。

采样均在上午8~9时进行。土壤水分用烘干法测定,重复4次。土壤硝态氮用酚二磺酸法,有效磷用Olsen法。并观察镇压对小麦生物学特性及产量的作用。

表 1 供试土壤耕层(0-20厘米)的基本性质

±	有	容 重		±	壌 駅 粒	组 成* (%	á) (粒 径.:	€ 米)	_	盐酸洗	质 地
	机				 			·		失量	名 称
壊	质(%)	(克/厘米8)	1 -0.25	0.25-0.05	0.05-0.01	0.01-0.005	0.005-0.001	<0.001	<0.01	(%)	(苏制)
红油土	1.18	1.47	0.41	9.36	25.32	10.95	13.41	30.07	54.43	10.48	重壤土
黑油土	1.53	1.38	3.28	0.34	38.66	9.78	11.3	25.37	46.45	11,27	重壤土

^{*}吸管法测定。

二、试验结果和讨论

1. 镇压对土壤紧实度和耕层构造的作用 土壤 镇压是通过机械的物理作用,压碎地表土块,压紧表 层土壤。因此,镇压表现的直接效果首先是土壤紧实 程度发生相应的改变。在土壤质地相同或近似的条件 下,土壤容重和土壤孔隙度是估量土壤的松紧状况的 重要指标。

表 2 资料表明, 经镇压的土壤, 容重增大, 而土壤 孔隙 度则 有所下降。 0—10厘米内变 化较大,10厘米以下基本不变。 镇压 也强烈地影响着土壤 耕层构造的特性,使土壤孔隙度和孔隙组成发生变化。

镇压后的土壤,由于非毛管孔隙减少,因而土壤

透气性显著降低。冬压比对照土壤透气性下降26.3%; 冬压加春压比对照下降34.6%(表3)。

2、镇压对土壤水分变化的作用 地下水位低,土壤和地下水没有毛管力联系的条件下,毛管完全充满水分的时间是短暂的,土壤水经常处于田间持水量以下。毛管水发生断裂,毛管传导作用停止,水分在土壤微粒间呈薄膜状态,在团聚体的接触处呈非连续的触点凹面水状态。在这种情况下,蒸发不仅在地表进行,而且土壤内部的水分也可汽化并经土壤孔隙向大气扩散。镇压的作用,一方面能压碎土块,压紧土层,使土壤蒸发面积缩小,大孔隙减少,防止汽态水扩散蒸发,有保墒防旱作用,另方面使土粒密集,有提墒效果。

由表 4 看出, 经镇压处理的土壤含水量比对照(未镇压)均有明显增长。0—20厘米土层镇压比对照含水量增高1.5—4%, 平均增高2.7%。0—10厘米土层,镇压后5天水分损失仅0.1%, 而对照失水达2.3%, 镇压13天后分别失水1.4%和5.7%。10—20厘米土层内则相反,镇压处理后, 土壤水分非但没有减少, 而且都有增加趋势。武功二道塬的结果,亦有同样的效果。这说明了镇压措施对保墒提墒有良好作用。

3。镇压对土壤有效养分的影响 镇压改变 调整 了土壤的紧实程度,使土壤水热、通气等条件发生相 应的变化,因此直接或间接地影响土壤养分的转化。试 验结果表明,镇压的各层土壤中硝态氮含量均比对照 有增加(图 1),0—5厘米最显著,较对照高出46.6%。

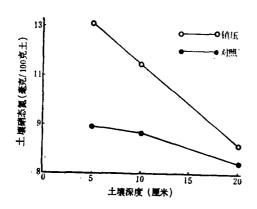


图 1 镇压对土壤硝态氮含量的影响

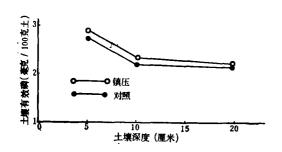


图 2 镇压对土壤有效磷含量的影响

有效磷含量,也有同样趋势,但增幅较小(图 2)。

4、镇压对小麦生长的影响 调查数据(表5)表明,镇压对小麦地上部分的生长状况有明显影响,植株健壮,抗逆性能增强,黄叶、冻叶数降低,前者较对照减低7%左右,后者较对照低12.3%。

镇压对小麦根系发育也有良好作用。不仅次生根 数量有增加趋势,且分布范围也有扩大。据不同处理

1	 	麒	田	友	+	季	恭	兩	押	3	W	图	į			Í
展 %		%		쏀	軠	歐	%	#	第	**	# #	非毛管孔隊度×100 毛管孔隙度	. × 100	ぬ	容 重 (克/厘米3)	(s*
			#1		- 	*		账		赵		(1)	*			
5 —10 10—20		10-2	0	0 — 5	5 —10		10—20	0 - 5	5 —10	10—20	0 - 5	5 —10	10-20	0 5	5 —10	10—20
47.55 44.15		14.15		40.82	39.28		41.04	16,81	8.27	3,11	41.2	21.0	7.5	1,13	1.39	1.48
46.42 43.77		13.77		44.52	41.66		40.70	10,57	4.76	3.07	23.7	11.4	7.5	1.19	1.42	1.49
52,08 50,57	<u> </u>	50.57	 	50.49	1	<u> </u>	47.93	13,62		2,64	27.0	1	5.5	0.95	1.27	1,31
50.94 50.18		50,18		54.40	45.43		45.47	4.09	5.47	4.75	11.6	12.0	10.4	1.10	1,30	1,32
50.57 49.06		90.61		50,30	44.13		45.02	6.68	6.44	4.04	13.3	14.6	6.	1.14	1,31	1,35

表 3 镇压对土壤表层(0—10厘米)透气性的影响

处	蹇	遊	4	性*
AL.	ASE	通气量 (升	十/分)	相对百分量(%)
对	黑	1.07 ± 0.3	2	100
*	压	0.79 ± 0.2	3	73.8
冬压+	春压	0.70 ± 0.2	2	65.4

^{*} 进气性测定仪测定。

小麦根系水平分布范围调查, 冬压麦为 14 平方厘米, 冬压加春 压 的 为 16 平方厘米, 对照仅 为 11 平方厘米。

镇压对小麦植株性状及产量均有明显效果。冬压加春压的作用更为突出。有效分蘖较对照增加25.8%,稳长比对照增加7.5%,产量增加12.3%(衰6)。

表 4

镇压对土壤水分含量的影响(%)

地		į.		处			理		测定日期		土层	深度	(厘 米)	
70	•	m.		24.			/92		(日/月)	0 — 5	5 —10	10-20	20—40	40-60
				馍	E	K	前		29 / 12	11	.8	14.7	15.1	14.5
武	į	助	铁	压	后	对]	M	4/1	9	.5	14.5	13.8	14.9
			第	5	夭	傶	J	Œ	4/1	11	.7	15.9	14.9	14.3
头山	E S	源	傶	压	后	对	J	RR.	10/1	6	.1	14.6	13.2	15.0
			第	13	秂	镇	J	Œ	12/1	10	.4	16.6	14.5	14.8
武	į	叻	-	对			照	_	25 /9	7.9	12.8	16.0	17.7	
二 ii	i i	原		慎			压*		25/2	9.5	16.7	19.0	17.7	_

^{* 12}月10日进行镇压处理。

表 5

镇压对小麦幼苗生长状况的影响

武功头道塬

AL 12	测定日期	株高	分 藥	黄 叶/总 叶	次生根	陈 叶/总 叶
处 骞	(日/月)	(厘 米)	(个)	(%)	(条)	(%)
对 照	16/2	14.4	5.3 5.8	27.1 20.1	5.3 5.6	24.1
对 照	00/0	15.1	4.2	33.6	5.6	_
镇压两次	26/2	14.7	5.2	26.7	5.8	_

武功二道塬

				分 麋	次 生 根	最长次生根	主茎高度	主茎叶数	黄叶数
处		理		(个)	(条)	(厘米)	(厘米)	(片)	(Jt)
	不	旗	压	4.35	4.4	7.65	16.95	5.0	2.2
正茬麦	镇		压	4.35	4.5	8.04	9.96	5.0	2.4
F-1	不	慎	压	1.65	1.1		7.06	2.9	2.2
回茬麦	模		压	1.90	1.2	_	7.35	3.1	1.1

(下转封3)

四、对我国华南地区有关土壤分类的意见

斯巴哈伦博士认为红色石灰土只能在热带、亚热带气候条件下、在纯石灰岩风化物上形成。如果石灰岩风化物上重新覆盖了其它洪积、沉积物,则其上所发育的土壤,不能称为红色石灰土,而只能称红壤或其它土壤。我国桂林喀斯特峰林区坡麓台地的红色石灰土,划入淋溶土网 (Alfisols),称棕红色淋溶土 (Chromic luvisol)(FAO1974)。这是一种具有棕色表土层、盐基饱和度较高的土壤。按美国农部土壤分类(USDA1975),称典型薄层湿润淋溶土 (Typic hapludalf)。对于我国长沙附近第四纪红色粘土发育的红壤,他称为网纹强淋溶土(plinthtic acrisol)。按美国农部土壤分类(USDA1975),称网纹潮湿老成

土(plinthudult),该土盐基饱和度较低。对于我国广州市郊罗岗公社花岗岩母质上发育的赤红壤,他命名为典型强淋溶土(Orthic acrisol)(FAO1974)。按美国农部土壤分类(USDA1975) 称典型薄层湿润老成土(Typic hapludult)。对于在紫色砂页岩母质上发育的紫色土,因全剖面均有CaCO3反应,并具明显暗色表层,向下过渡不太明显,土壤发育较为微弱,他认为应属始成土纲(Inceptisols),称中性始成土(Eutric cambisol)(FAO1974)或称典型饱和淡始成土(Typic eutrochrept)(USDA1975)。

总之,斯巴哈伦博士这次来华,在标本采集、陈 列方面做了大量工作,并对我国土壤标本陈列工作提 出了改进意见。这将对我国的土壤标本陈列工作起到 促进作用。

(上接第94页)

表 6

镇压对小麦生物学特性及产量的影响

(武功二道填)

处	理	株高	茎粗	(厘米)	分蘖	(个)	穗长	千粒重	7000	#
XL.	7 22	(厘米)	第一节	第二节	有 效	无 效	(厘米)	(克)	亩产(斤)	增产(%)
z ,t	m	112.4	0.31	0.31	3,1	1.5	6.7	28.4	504	_
冬	压	108.6	0.31	0.31	3.3	1.2	6.9	27.7	537	6.5
冬压	+ 春压	109.8	0.32	0.31	3.9	0.8	7.2	28.6	566	12.3

三、小 结

关中地区属典型的华北季风气候,一年中干湿季分明。当7、8、9月雨季过后,土壤水分由集中恢复阶段进入消耗阶段。因此,小麦播后,土壤水分常处于田间持水量以下,有时表土接近凋萎湿度,这时耕层水分运动主要是扩散作用。因此镇压措施的运用,有明显改变土壤孔隙状况,减弱通透性的作用。从而可以

收到保墒提墒的良好效果。

土壤镇压对土壤养分有效性也有良好作用。从而能改变作物生长的土壤条件,促进小麦生长发育,提高产量,一般可增产6.5—12.3%。

群众对镇压措施的运用,目前仍不普遍。随着生产的发展,科学技术水平的提高,运用综合措施以获得高产是必然的途径,小麦镇压措施应该是其中不可缺少的环节之一。