An值低, 碳铵, 硫铵表施的利用率低则其An值高。

3。15N示踪法与差值法计算的利用率的比较:比较表2及表5中作物地上部分对氮素的利用率,可以明显看出差值法计算的利用率一般都高于15N示踪法测定的利用率,这是因为施氮肥后作物对土壤氮的吸收量都有增加,而差值法计算中则无法从作物吸收氮中扣除这部分土壤氮素激发量,因而使利用率数值偏高。这一结果符合以前的研究(12)。

三、摘 要

在宁夏的石灰性土壤上,应用¹⁵N 示踪技术研究 了化学氮肥的不同施用方法对春小麦氮素利用率及氮 素平衡的影响,结果表明:

- 1. 氮肥深施能显著提高作物的吸收利用率,减少损失,以铵态氮肥更加明显。
- 2. 尿素和硝态氮肥的施用,在轻壤土上,由于它们易随水下渗,因此可结合灌水或降雨前施用(日降水量不少于20毫米)也可达到与深施相似的效果。而铵态氮肥则由于随水下移范围有限,大部分持留在土壤表面,挥发损失很大,因此施用时必须强调把肥料施到一定的深度,有条件的地方以粒肥深施为宜。
- 3。用差值法和示踪法研究氮肥利用率时,结果之间有较大的差异,非示踪法利用率高于示踪法。原因是由于施氮肥促进了土壤氮的矿化,即激发效应。

参考文献

- (1) 朱兆良等.稻田中¹⁵N标记的硫铵的氮素平衡 的 初步研究。科学通报,22,503,1977。
- [2] 中国科学院南京土壤研究所长效肥组:碳酸 氢铵粒肥, 第38页, 江苏人民出版社, 1977。
- (3) Craswell, E. T. and P.L.G. Vlck, Nitrogen and Rice, 175-192, IRRI, Manila, Philippines, 1979.
- (4) DeDatta, S.K., et al., Trans. 9th, Int. Soil Sci. Congress, Adelaide, Australia, N. 67-76, 1968.
- (5) Fenn, L. B. and D. E. Kissel, Soil Sci. Soc. Am. Proc., 40, 394-398, 1976.
- [6] 曹志洪等:长效性碳酸氢铵的研究。土壤学 报, 17(2):133--144, 1980。
- [7] 邢光熹,曹亚澄. ¹⁸N 质谱分析某些技术改进。土壤,第6期,224—229页,1978。
- (8) 朱兆良等, 苏州平田黄 泥土氮素供应过程 的 特 点及其与氮肥施肥方法的关系。土壤学报, 16(3), 218—233, 1979。
- [9] 黄东迈等:有机无机肥料氮 在水稻—土壤系统中 的 转化与分配。土壤学报, 18(2):107—121, 1981。
- (10) Hunter, A.S. and Carter, L.L., Soil Sci., 100, 112-117, 1965.
- [11] 朱兆良:土壤中氮素的转化和移动的研究近况。土壤学进展, 第2期, 1—16页, 1979。
- [12] Nethsinghe, D.A.: 应用同位素和辐射来研究肥料利用的效率。 粮农组织《土壤学报》丛书, 37: 154—166, 1978。

高产地区轮作制度与农田生态平衡的研究

王颖明

黄以兴

(广东湛江地区农业局)

(商州县长坡农科站)

近年来,改革耕作制度、提高复种指数已成为人多田少高产地区解决粮食,增加收入的必由之路。但是,随着复种指数的提高,用地养地的矛盾则突显出来。一些地方处理不当,便带来地力下降,产量徘徊,化肥农药越用越多,成本越来越高。为了摸索在复种指数高的地区,建立养用结合的优良农田生态,特于1978—1980年连续三年在高州县长坡公社,就当地的几种主要耕作制度进行了定位试验观察,现把试验结果整理如下。

研究方法

在高州县长坡公社周垌大队自立坡生产队不同轮

作方式的连片农田上,选择有代表性的典型田块,按当地习惯布置了稻—稻—秋薯、稻—稻—冬薯、稻—稻—小麦、稻—稻—冬大豆、稻—稻—绿肥等五种轮作制的定位试验,连续三年。试验田土壤为花岗岩发育的泥田,土壤肥力中上等。试验前后每年均取土分析。田间管理和施肥按当地高产要求进行。每季皆验收粮食和秸草等生物产量,三年汇总,分析各种耕作制的生态功能、经济效益及土壤肥力的变化。

结果讨论

一、几种轮作制的粮食产量和经济效益 几种轮作制三年的产量结果汇总列于表 1 和表2。 从这些结果看出,粮食产量以早稻—中稻—秋薯轮作制为最高,三年平均年亩产达3333斤,稻—稻—绿肥 设低,只有1526斤,早稻—晚稻—冬薯、稻—稻—麦 和稻—稻—豆分别为2227斤、1961斤和1721斤。

. 从产量、成本和投工量等多数计算而得的经济效益(衰2)来看,也以稻一稻一秋薯为最好,平均每年每亩纯收入378元,每元成本和每个工获利分别为4.66元和3.44元。其余依次为稻一稻—冬薯、稻—稻—豆、稻—稻—麦和稻—稻—绿肥。

稻一稻一秋薯轮作的总产量及经济效益之所以较高,从逐季的产量结构(表1)看出,主要因其秋薯产量高,占全年的比例达55%。而其后作早稻并不比其

他轮作制高,最后的中稻甚至还比其他低些。秋薯产量比冬薯高得多,主要可能是生长季节较长,生长则内特别是冬前的光照和温度条件优越,昼夜温差大,有利于薯块发育。而冬薯因栽培季节较迟,冬春易受。客,所以产量较低。若按稻麦等纯粮食产量计算,总产量则是以稻一稻一麦轮作制为高,但因小麦产量一产量则是以稻一稻一豆轮作中,冬豆产量虽不高,但每年却以亩增粮40斤的幅度上升,后作早强不高,但每年却以亩增粮40斤的幅度上升,后作早超产量也逐年上升,1980年比1978、1979年分别增产27.3%和6%。稻一稻一绿肥轮作中,绿肥鲜草产量逐年大幅度下降,早晚两熟水稻1980年比1978年也增

表1

几种轮作制三年各熟产量

(折原粮)

(斤/亩)

轮作方式	1978年					1 9	79年			1 9	1980年比1978年 増 产			
10 11 33 24	春收	夏收	秋收	全年	春收	夏收	秋收	全年	春收	夏收	秋收	全年	斤/亩	%
精、稻、肥	4120 (緑肥)	840	662	1502	3232	825	635	1460	2134	930	685	1615	113	7.5
植、柑、麦	453	846	648	1947	333	874	675	1882	412	912	695	2019	72	3.7
相、相、豆	163	671	632	1466	204	806	653	1663	248	854	633	1735	269	18.4
器、器、秋暮	1680	826	504	3010	2006	864	600	3470	1812	1103	602	3517	507	16.8
稻、稻、冬暮	677	673	688	2038	1000	816	624	2440	589	860	755	2204	166	8.1

折粮标准。蕃薯5斤折粮1斤,小麦1斤折粮1.5斤,大豆1斤折粮1.7斤。

表 2

几种轮作制的产量和经济效益(三年平均值)

		毎年主产品(折粮食)(斤/亩)					稿秆产量 (斤/亩)						经 济	效	盐		
轮作方式	稻谷	杏苔	小麦	大豆	全年食	稻麦秆	豆茎叶	绿肥	事摩	产值 (元/亩)	成本(元/亩)	纯收入 (元/亩)	投 工 (个/亩)	一元成本 获利(元)	毎工获利 (元)		
相、相	胃、	肥	1526	_	-	_	1526	1737	_	3162		218.6	52.5	166.1	56	3.16	2.97
積、和	ø,	冬薯	1472	755			2227	1380	_	_	3027	317.7	73.4	244.3	95	3,33	2.57
相、相	A,	秋薯	1500	1833	_		3333	1383	—	_	4582	459.4	81.2	378.2	110	4.66	3.44
相、相	日、	小麦	1550	—	411		1961	2125	_	_	_	249.2	68.8	180.4	75	2,62	2,41
樹、和	A.	冬豆	1516		-	205.2	1721	1440	337	-	_	223.3	54	169.3	65	3.14	2.60

稿秆百斤价值:干稻草(麦秆)2.5元,干豆茎叶4.5元,鲜薯茎叶2元,绿肥1元。粮食:按国家牌价。

产较小,估计肥料用量较低,特别是磷肥用量过低是 重要原因之一。

二、几种轮作制的物质循环状况

1. 生物物质归还率.生物物质的理论归还量包括根茬、落花、落叶及稿秆等,以稻一稻一豆轮作制略高,占生物物质总生产量的62.3%,其次是稻一稻一绿肥,占60.8%,稻一稻一冬薯和稻一稻一麦各占60%,最低是稻一稻一秋薯,仅有52%。由于部分稿秆要用作燃料,实际归还率一般仅占理论可归还量的

50-70%。其中以稻-稻-肥最高(71%),稻-稻-麦最低(50.8%)。

2。主要养分循环状况:根据植物分析、产量、生物归还量和施肥归还量等数值计算而得的主要养分收支结果(表 3)表明,其养分循环量和循环 强 度 均 以稻一稻一秋薯为最大。三年中每亩作物从土壤带走的 N、 P_2O_5 、 k_2O 分别为195、143、412斤,而通过生物物质归还和施肥归还给土壤的分别为 344、154 和332斤。循环量大于其他轮作制50%至 2 倍。其余依次是

15 4

稻—稻—冬薯、稻—稻—麦和稻—稻—豆等。

从土壤中氮、磷、钾三要素的收支平衡账看出,在 当地施肥水平和施肥习惯下,三年中各种轮作方式的 氮施入量均大于支出量。磷的状况,除稻一稻—肥轮 作中是支出大于收入外,其它轮作制都是收入大于支 出。说明当地习惯施肥法在绿肥上磷肥施用量过低。而 钾,各种轮作全都亏空,其中又以稻—稻—秋薯亏空 最多,其余 依 次 为 稻—稻—肥、稻—稻—麦、稻—稻—豆、稻—稻—冬薯。

3。 投肥效率: 投肥效率是指全部生物物质中养分的含有(产出)总量与实际施肥量的比值。几种轮作制

的投肥效率相比较(表 3),对氮、磷、钾三要素的投肥效率都以稻一稻一肥轮作制为最高,而以稻一稻一秋事为最低,其他几种介于其间。若三要素本身相比,几种轮作方式的投肥效率又均表现为 $K_2O>P_2O_6>$ N。说明对几种轮作制的钾肥供应皆不足,由此可能导至土壤中原有钾素的耗竭。

三、不同轮作制对土壤肥力的影响

1. 土壤有机质和全氮: 三年轮作后,两者都提高的有稻一稻— 绿肥,绝对值分别提高0.14%和0.046%;稻—稻—豆三年轮作后,有机质提高0.09%,全氮无明显变化;稻—稻—冬薯轮作,有机质提高

表 3

几种轮作制的土壤养分收支平衡对比

(单位:斤/亩)

	作物吸收总量				归 还	<u> </u>	壤	部分	·	土壤收支状况			投肥效率		
轮作方式				残留的根茬落花叶			施肥								
	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
稻、稻、肥	125.1	61.6	164.9	6	2	5.5	163	53,1	95.7	+ 43.9	- 6.5	- 63.7	0.77	1,16	1.72
稻、稻、冬薯	146	95.2	260.9	5	3.6	6.4	195	100	234	+ 54	+ 8.4	- 20.5	0.75	0.95	1.11
稻、稻、秋薯	195	143.2	412.5	12.5	5.3	8.0	331	148.5	324	+ 148.5	+ 10.6	- 80.5	0.59	0.96	1.27
稻、稻、麦	136.7	71.1	169.2	5.5	1.8	4.1	202	90.1	121	+ 70.8	+ 20.8 -	- 44.1	0.68	0.79	1.4
稻、稻、豆	113.2	60	153	9.6	2,4	7	180	60	125	+ 76.4	+ 2.4	- 21	0.63	1.00	1,22

计算方法: (1) 施肥+残留的根茬落花叶-作物吸收总量=土壤收支状况(±)。

(2) 绿肥、大豆从土壤中吸 N按1/3计算。

0.22%,全氮略有下降,可能因冬薯时有稻草还田,粗纤维较多,冬季低温,有机质矿化作用不强所致;稻一稻一秋薯则相反,有机质下降了1.06%,全氮却增加0.02%,可能因秋薯期间温度较高,矿化作用较强,且氮肥用量较多之故,稻一稻一麦轮作后,有机质和全氮皆有降低,分别下降0.16%和0.077%,说明三季禾本科作物对地力消耗较大。

- 2. 土壤磷素的变化:几种轮作制的土壤全磷含量都有所增加,增加幅度在0.01—0.04%。速效磷除稻—稻—绿肥下降0.2ppm外,其余轮作中都有所提高,提高了7.4—14.6ppm。
- 3。土壤速效钾,几种轮作制下,速效钾均有所下降,其中又以稻一稻一冬薯和稻一稻一秋薯下降最大,分别下降了52和45ppm。
- 4. 土壤pH: 几种轮作制的土壤pH也普遍降低,降低幅度在0.2—1.2个pH单位。其中以稻—稻—绿肥降低最大,其次为稻—稻—冬薯和稻—稻—麦,以稻—稻—豆降低最少。

综上所述,几种供比较的轮作制中,以稻一稻一

秋薯的产量最高,经济效益也大,但吸肥量也最多,对土壤肥力的影响也较大,在肥料能充分供应的条件下,是可以推广的轮作方式。稻一稻一豆耗肥较少,而经济效益不低,对土壤肥力的消耗也较小,甚至有培肥土壤的作用,因此在肥料供应一般的条件下,也是值得提倡的轮作制度。稻一稻—麦比稻—稻—绿肥的粮食产量较高,但需肥量和对地力的消耗也较大。本试验中的稻—稻—绿肥轮作制,由于磷、钾肥的施用量较低,影响了试验效果,它的价值尚待进一步研究。

伊素缺乏是几种轮作制共同表现出的问题。一是 伊肥施用量不足,二是土壤钾素肥力较低,连续集约 化种植使土壤速效性钾进一步下降,尤以稻、薯轮作为甚。因此,在施用大量氮、磷肥的同时,配合增施 钾肥,当是夺取高产和改善土壤钾素肥力 的 重 要 措施。

此外,鉴于高产要求而施用大量化学肥料,会使 土壤变得更酸和板结。为防止这些不利因素发生,看 来在强调施用有机肥和秸秆还田的同时,配合施用石 灰或石灰石粉也很必要。