铜肥对水稻的增产效果

严悦水

(福建省明溪县农业局)

据报道,土壤中有机质多易发生缺铜,质地偏沙或偏粘的稻田也可能缺铜。土壤中有机质含量高,铜易被土壤有机质(如胡敏酸等)所固定,或与多羧有机酸(如柠檬酸、琥珀酸等)形成稳定的络合物。有些田因种植水稻长期处于淹水状态,或土壤质地偏沙,土壤吸附性差,易被淋溶下移,或聚积在聚积层或者淋洗损失,也可能导致表层的含量降低。有些田由于复种指数或产量水平要求较高的情况下,没有铜元素的补充,也有可能导致土壤中铜的缺乏。此外,酸性岩发育的土壤含铜较少,也有可能导致铜的不足。

一、铜肥的增产效果

近年来,为了探索水稻对微量元素肥料的反应,我县在1979—1980年微肥田间试验取得增产效果的基础上,又在全县范围内三十多个点上进行试验,黏证明了铜肥对水稻的增产效果显著,尤以冷、烂、粘、沙田类增产幅度大,并在已取得明显增产效果的地方进行示范,1982年全县示范田面积约2500亩,1983年推广了2万亩,大多数增产幅度在10—20%,试验结果列于表1。表1说明,施用微量元素肥料铜对我县大部分水稻土均有增产效果,施铜的每亩平均增产96斤,增产率平均为14%。

البرة المورد المورد المورد المورة المورد الم

- a、红外反射中等的, 21类, 新开河。
- b、红外反射强的: 15类,裸露地。

经过上面的各种分析之后,可以获得非监督和监督分类各类与实际土壤类型或地面复盖 类型的对应关系表。从而可勾绘出各种所需的专业图件。

(三)专业图件

- 1.1:5万(暫定)南京市土地利用图(地面覆盖图)和土壤图。
- 2.1:5万(暂定)江宁县土壤图和土地利用图。
- 3.1:5万(暂定)江浦县土壤图和土地利用图。
- 4.1:5万南京市、江宁县、江浦县水域分类图。
- 5.1:5万马鞍山一镇江的长江岛屿与河岸移动图。
- 6.1:5万新秦淮河图。
- 7. 其它。

参 考 文 献

[1] 曾志远,卫星图像土壤类型自动识别与制图的研究 [计算机分类及其结果的光谱学和地理学分析。土壤学报。 21(2),182—193,1984。

^{*} 参加工作的有李汉禄、翁忠煌、汤伯清、赖窗兴、王金风、王克平、伍玲、谢金华等同志。

(1982年)

假茎粗

(厘米)

土 填	试验点数	试验小区面积 (亩)	水稻季别	处 理	产量 「(斤/亩)	平均产量 (斤/亩)	增产	
							斤/亩	%
灰沙田	2	0.02-0.03	早稻	施領	540—728	634	132	26
	-				386—617	502		
冷水田	1	0.1-0.2	单早	施铜 未施	820 656		164	25
決 脚	·			基铜		786		22
烂泥田	3	0.032-1.5	单晚	未施	753—847 576—714	645	141 —	_
烂泥田	4	0.04-0.25	单晚	施钢	667—1125	851	147	21
				未施	565-900	704		
残 灰 黄泥田	1	0.03	单晚	施钢	980		120	14
				未施	860	. <u></u>		
深	4	0.2-1.6	单晚	進帽	560-1009	819	79	11
				未施.	468-925	740	-	
灰泥田	2	0.02	双晚	施領。	615630	623	63	11
				未施	560	560		
黄 底 灰泥田	8	0.02-1.0	双晚、单晚	施領	390—1125	725	56	8
				未施	375—1060	669	_	
黄泥田	1	0.04	单晚	進铜	675		40	6
				未施	635			-
沙质田	2	0.03-0.15	双晚	施钢	630-972	801	18	2
			77.94	未施	616-950	783	_	_

注:硫酸铜用量为 1--2 斤/亩;施用方式有基肥、面肥和追肥。

二、铜肥对水稻生长发育的作用

(一)促进稻根生长、增加根系干重、使稻苗早生快发 据县土肥站1982年7月25日在枫溪红光村头塅对单季稻施铜和不施铜的调查结果,施铜的每株根数平均增加5.2条,根长增长0.93厘米,每株鲜根重增加8克;全县各试验点平均根干重增加1.7克。根部物质的增加,使根的吸收能力增强,进而增加对地上部分的供给,使水稻分蘖早而多。7个处理经T测验,每丛苗数增加5.3个,差异达到极显著水准(表2)。

(二)促进稻株生长,扩大绿叶面积,增加光合作用产物 铜是作物体内各种氧化酶活化基的核心元素,按照原子价的可逆增减进行电子的接受与传递,故在作物体内氧化还原反应中起

铜肥对水稻生长的影响

項 目 苗 高 每丛苗敷 每丛緑叶敷 叶 面 积 鲜 苗 重 干 苗 重 (克/丛) (克/丛

3 1 1.13 77.6 20.7 77.7 47.3 130.8 28.7 6.6 54.7 39.8 89.9 17.4 1.04 不施铜(对照) 72.4 15.4 4.9 7.5** 23.0** 40.9** 11.3** 1.7 0.09 5.2* 5.3** (T = 4.20)(T = 2.48)(T = 4.48)(T = 5.68)(T=3.17)(T = 6.45)堇 性

表 2

重要作用。铜参与多酚氧化酶的组成,抗坏血酸氧化酶也是一种含铜酶,多酚氧化酶、酪氨酸酶、抗坏血酸氧化酶多存在于叶绿体中,故能提高叶绿素含量和稳定性,因此水稻施用铜肥后,能促进稻株生长,扩大绿叶面积,增加光合作用产物的累积。据各试验点观察考苗结果,经T测验,苗高平均增高5.2厘米,每丛鲜苗重平均增加40.9克,差异达到显著水准,每丛绿叶数、叶面积和干苗重,分别增加23叶、7.5平方厘米和11.3克,差异均达到极显著水准(表 2)。

(三)使水稻穗大, 粒多, 增加千粒重和提高结实率 水稻施用铜肥后, 对水稻的经济性状有良好的作用(表 3), 主要表现在植株增高, 穗长增加, 有效穗增多, 结实率提高, 千粒重增加, 差异均达到显著水准, 每穗增加3.7粒, 差异达极显著水准。

#	7

铜肥对水稻经济性状的影响

	株高	移长	每丛有效糖	毎穗实粒数	结实率	千粒重	产量
項目	(厘米)	(厘米)			(%)	(克)	(斤/亩)
试验点数	15	11	10	16	17	16	30
施 領	90.7	19.9	13.0	94.0	80.1	26.1	776.7
不施铜(对照)	88.5	18.9	12.0	90.3	77.3	25.2	690.6
增 数	2.2	1.0*	1.0*	3.7**	2.8*	0.9*	86.1**
显 著 性		(T=3.03)	(T=2.68)	(<i>T</i> = 3.03)	(T = 2.19)	(T = 2.57)	(T = 8.29)

(四)促进稻株发育、提早成熟 据夏阳农技站1982年8月13日调查,施用铜肥的苗高增加7.3厘米,主茎增高6.3厘米,幼穗分化长度增长0.76厘米,叶色绿,始穗期提早3天,齐穗期提前4天。另据县土肥站1982年8月16日在枫溪公社路背垅调查,施铜的幼穗分化已达4期中(幼穗长为0.8—1.1厘米,约在7月1日开始分化),未施铜的幼穗分化仅在3期末—4期初(幼穗长0.4—0.6厘米,约在7月4日开始分化)。由上可见,铜有促进稻株发育,提早成熟的作用。

(五)增强稻株抵抗真菌病害的能力 1982年夏阳农科站试验结果表明,施铜的穗颈瘟穗发病率只有12.5%,而未施的穗颈瘟穗发病率达20.3%,施铜的相应降低了7.8%,此外,还能抑制青苔的蔓延生长。

铜是作物正常生长必不可少的,而且是不可代替的营养元素之一,作物所需的铜主要由土壤供给。我县水稻土大部分是酸性花岗岩发育而来的,铜的供给水平较低,现有16.4万亩水田,可能缺铜的冷、烂、粘、沙田类有6.5万亩,占全县水田面积的39.6%,因此在施足氮、磷、钾、硫肥及有机肥的基础上,补施铜肥是很有必要的。施用铜肥简便易行,用量少,成本低,经济有效,既可做基肥,又可做追肥,也可沾秧根或根外追肥,但以追肥效果为好。每亩施用1—2斤硫酸铜只花费1—2元。铜肥施用后以每亩增产95斤稻谷计算,其收益就相当可观,因此必须力争在冷、烂、粘、沙田等类土壤上推广使用,发挥铜肥的增产效应。