水文示踪剂在西德几种砂土中的行为

杨苑璋 D. 克洛茨 F. 奥里夫

(中国科学院南京土壤研究所) (联赛

(联邦德国辐射水文测量研究所)

在测定土壤中水流的方向和速度,以及土壤水流的扩散率时所用的水文示踪剂,应是具 有以下特性的一些标记物质:(1)能很好地与土壤水混合在一起,随着土壤水传送;(2)不改 变土壤水的物理性质(如:水的密度等),(3)在土壤水传导时不被吸附;(4)有足够长的半衰 期,以满足试验所需,(5)经大量稀释后,也能达到测量的要求。能保持与水相同行为的示踪 剂被认为是理想的示踪剂。通常加入β射线氚(³HHO)作为理想的参照示踪剂。但是,氚的 半衰期较长(约为12.3年),实际使用很不方便,容易造成污染。为了选择比较安全的示踪剂, 必须对这些示踪剂与氚进行比较,并对它们在土壤中的行为进行研究。

一、原 理

水文示踪剂在土壤水流中,经历一个浓度变化的过程,它们在土壤水传导中,发生示踪 剂溶液的机械混合,称为弥散⁽¹⁾,示踪剂在水中的分布状况主要是由弥散控制的。弥散特性 取决于水的流动速度、多孔介质的粒径和渗透性,以及流体的动粘滞系数。

土壤水在细孔隙中流动时传输示踪溶液,由于示踪剂在土壤的颗粒骨架上被吸附,示踪剂的传输被延缓。示踪剂的这种延缓,由延缓系数 R_f 来表述,它的值是土壤水的平均流速 V_a和示踪剂的平均传输速度V_T之比,即R_f = V_a/V_T……(1)。实际上,示踪剂在土壤中的延 缓系数取决于土壤的密度和容重等。

当土壤样品处于平衡状态时,被土壤颗粒吸附的示踪剂固有的浓度,与溶液中存留示踪剂的固有浓度之比,称为分布系数 K_a ,它表示示踪剂可逆吸附的数量。Mayer 积 Tompkins⁽²⁾ 认为在分布系数 K_a 和延缓系数 R_r 之间存在如下的关系: $K_a = \frac{R_r - 1}{\delta/n}$ (2) 式中 δ 表示

干容重, n表示土壤的总孔隙度。

本试验的目的,是确定这些示踪剂在五种砂土中的分布系数Ka。某种示踪剂的 Ka 值愈大,则它被土壤吸附愈多,因而不能在土壤中起到追踪水流的作用。

二、试验方法和步骤

土柱试验是用五种砂土分别装入五根土柱中,在实验室内进行的。土壤和地下水样品都 与野外试验相同,野外工作是在联邦德国的某地进行的。示踪溶液样品定时地自动收集和测 量。

(一) 土柱装置

图1概略地描绘了实验所用的土柱装置。土柱为一根直径5厘米,长50厘米的有机玻璃

189

管。土壤样品用一般的实验装填方法装入土柱中,即先加一层水,然后加一薄层(约2厘米) 土壤样品,用一根圆棒捣实,敲击管壁四周,排除土壤颗粒间包闭的空气,使达到一定的容 重。土柱中装入质量m的土壤样品,因而干容重(δ)为: $\delta = m/V_s$(3),式中,V_s为土柱 容积(约981.7厘米³)。在土壤样品装填时,加入体积V_w的水,因此,总孔隙度(n)为: n=V_w/V_s.....(4)。五根土柱的干容重(δ)和总孔隙度(n)列于表1中。

表1 五种砂土的容重和总孔隙度

土柱号	土 重 (g)	水体积 (cm ³)	千 容 重 (g/cm ³)	总孔隙度
1	1941	269	1.98	0.274
2	1806	274	1.84 (1.94)*	0.279 (0.238)*
3	1982	261	2.02	0.266
4	1860	303	1.89	0.309
5	1955	263	1,99	0.268

* 括弧中的值为土柱 2 从测量系列 I 开始的紧实度和 总孔隙度。

在土柱上端的水流入口处,安装一个加 水泵,在土柱下端的水流出口处,连接一个 水位控制器。调节加水泵的速度,使加入土 柱中的水流通量Q保持不变。实验表明,在 同一试验过程中,每个土柱的水流通量波动 很微小。渗透速度(V_t)为: $V_t = Q/F$ …… (5),式中F为土柱的横截面积(约19.63 厘 米²)。五个土柱三个测量系列的渗透速度列 于表 2。

在土柱的水流入口和出口处,分别放置 两块水流分配板,使水能均匀地流入土柱中。 土柱的上部和下部还分别装有水流压力计, 它指示土柱上下部位之间的压力差。用一个 1m1的注射器将示踪剂直接从入流分配板上 方的间层式注射口注入。在土柱的出流口处 连接一个样品收集器,能定时地自动收集流 出的水样。

测量方法分别为: Y 射线用盖革一缪勒 计数器,β射线用液体闪烁仪,荧光染色剂

图1 土柱装置简图

1有机玻璃园筒	6——水篱压力计
2入流分配板	7马略特装置
3出流分配板	8加水泵
4砂芯过滤板	9——间层式注射口
5砂土	10 —— 水位控制器

表2 土柱的渗透速度(cm/s)

(CARDING)	A DESCRIPTION OF A DESC		
土柱号	测量 系列 I	测量系列Ⅰ	测量系列Ⅱ
1	2.4×10-4	2.5×10-4	2,4×10 ⁻⁴
2	2.5×10^{-4}	2.6×10-4	2.3×10^{-4}
3	2.2×10^{-4}	2.3×10-4	2.2×10-4
4	2.7×10^{-4}	2.7×10^{-4}	2.6×10-4
5	2.6×10^{-4}	2.6×10^{-4}	2.6×10^{-4}

用荧光计,电介质用电导仪。每次示踪混合物中,放射性示踪剂与荧光染色剂共用,都能被 分别测出。

(二)试验用的砂土和地下水

本试验采用联邦德国南部的五种砂土*,它们代表了该地区地下水流经的五种主要类型的

^{*} 感谢K。-P。赛勒博士,提供这些样品。

土壤。用筛析法测定这些砂土的粒径,它们 的粒径分配带绘于图 2 中。颗粒累积含量为 10%的颗粒直径为有效粒径,记作 d₁₀,颗粒 累积含量为50%的颗粒直径为平均粒径记作 d₅₀,它们与土壤的透水性有密切的关系。 以颗粒累积含量为 60% 的颗粒直径d₆₀与有 效粒径d₁₀之比,称为不均匀系数 U(U= d₆₀/d₁₀),表示颗粒大小不等的程度。这些 结果汇集于表 3 中。

试验用水是当地自然的地下水,水的密 度(20℃时)为0.997g/cm³,电导率(20℃时) 为275µS/cm, pH值6.0, E_b值435mV。

(三)试验用的示踪剂

1. 用氚水 (³HHO, β射线, 半衰期
12.35年)作为参照示踪剂。它能广泛地体现
土壤水的流动过程。在某些情况下, 氚也可
能发生与有机成分的氢的同位素交换, 或者
与粘土矿物成分的结构水中氢的交换而产生
延缓^(3,4)。在三次加入的示踪混合液中, 均
含有氚水, 其它示踪剂都与氚作比较。

T 47 47	alo (mm)	aby (mm)	U
1	0.20	0.65	3.7
2	0.21	0.64	3.4
3	0.22	0.62	3.1
4	0.14	0.40	3.4
5	0.24	0.70	3.5
	······		

注。d10为有效粒径;d50为平均粒径;

U为不均匀系数。

2. 氯化物和硝酸根。它们是化学上稳定的阴离子,作为非活性盐(NaCl, KNO₃) 被加入。这两种离子是在大多数地下水中存在的,因此,加入这些离子会降低测量的精度。

3. Y射线Br-82(半衰期36小时)。^{8*}Br⁻是化学上很稳定的阴离子,溴化物具备很好的 示踪特性⁽⁵⁾。然而,由于它的半衰期短,故只适合在水流速度较快的试验中应用, Y 射线 I-131(半衰期8.07天),Behrens认为碘化物可能被微生物转化,会使以碘化物的形式显示出 矛盾的示踪特性,Y射线Cr-51(半衰期27.7天),以Cr-EDTA 复合物的形式,被Knutsson 等人⁽⁶⁾作为水文示踪剂采用。至今观察,Cr-EDTA 在化学上一直是稳定的。

4. 荧光染色示踪剂Uranin 和 Eosin, 多年来应用于细孔隙土壤水传导的研究中。根据 Behrens 和 Seiler⁽⁷⁾ 的结果,它们适用于钙质砾石中,在细粒状的第三纪砂土中肯定会出现

衣 4	示 际 准 合 初 的	注 	-
示踪混合物	I	I	I.
注射日期 (年、月、日)	1983. 11. 29	1983. 12. 12	1984. 1. 10
测量时间 (天)	9	28	24
注射量 (ml)	1	1	2
示踪 剂 浓度	³ HHO : 1µCi/ml ⁸ ² Br : 50µCi/ml NO ₃ : 1mol	³ HHO : 1μCi/ml ¹³¹ I : 150μCi/ml Eosin:20μg/ml	³ HHO: 0.5µCi/ml ⁵ 1Cr-EDTA: 25µCi/ml Uranin: 3µg/ml Cl: 1mol

* Y射线的化学浓度, \$2Br - 和 51Cr-EDTA≤10-4mol, 131I≤10-9mol。

(四)试验步骤

砂土裝入土柱之后,为了调节一个固定的颗粒骨架,五根土柱都用地下水以大约2.5× 10⁻⁴ cm/s的渗透速度贯流两周。然后,分别在1983年11月29日(测量系列I),1983年12月12 日(测量系列I),和1984年1月10日(测量系列I),对这五个土柱注射了三次不同的示踪混 合物。测量系列I,示踪混合物I (³HHO,³Br⁻,NO₃⁻),测量系列I:示踪混合物I (⁴HHO,¹³¹I⁻,Eosin),测量系列I:示踪混合物I(³HHO,⁵Cr-EDTA,Cl⁻,Uranin)。这些示踪混合物的注射量和注射浓度列于表4中。

三、结果和评价

(一) 结果

 1.示踪剂的浓度行程曲线。在土柱试验 过程中,定时测定土柱流出液中的示踪剂浓 度,绘制出各种示踪剂的浓度行程曲线(图3)。

按照Klotz⁽⁸⁾的方法,由浓度行程曲线 确定流动速度 V_a和传输速度 V_T: V_a和 V_T = //t.....(6),式中,1为流动距离(即土柱长 度), t 为浓度行程曲线峰顶经过的时间。土 壤水在土柱中的流动速度 V_a,由含氚示踪剂 的浓度行程曲线获得。传输速度 V_T,由各 种示踪剂的浓度行程曲线得出。

2. 延缓系数和分布系数。从上面得到的氚水的流动速度(V₄)和示踪物的传输速度(V_T),代入公式(1)计算出延缓系数(R_f)。 这些结果汇集于表 5 中。

一种示踪剂在砂土中的延缓系数R₁,取 决于砂土的紧实度(干容重,孔隙度),而这 些值是不变的,那么,这种示踪剂在土柱中 的分布系数 K_a 就决定于延缓系数。将 每一

劓

图3 土柱4中三种示踪剂(第II测量 系列)的浓度行程曲线

间量系 列	示踪物	土 柱 1	土柱 2	土 柱 3	土柱(土柱 5
T	82Br-	1.04		0,98	0,97	1.00
•	NO ₃	1.38	(1,8)*	1.03	1.04	1.66
	131 I -	1.05	(1.0)	1.03	1.09	1.01
•	Eosin	1.46	(1.4)	8.2	2.3	1.25
	⁵¹ Cr-EDTA	1.06	(1.2)	1.13	1.14	1.10
I	Cl-	1.09		1.00	0,98	0.94
	Uranin	1.39	(1.2)	2.02	1.57	1.30

示踪剂在五种砂土中的延缓系数

* 括弧中的延缓系数,在测量系列 I 中以 82Br-为参照示踪剂,其余的以 Cl-为参照示踪剂。

192

表 5

各种示踪剂在五种砂土中的分布系数(cm³/g)

		Y射线			非活性阴离子		素物质
工, 任	82Br-	1311	⁵¹ Cr-EDTA	CI-	NO3	Uranin	Eosin
1	0.01	0.01	0.01	0.01	0.05	0.05	0.06
2	·	0.00	0.02	-	0.12	0.02	0.05
3	0.00	0.00	0.02	0.00	0.00	0.13	0.95
4	0.00	0.01	0.02	0.00	0.01	0.09	0.21
5	0.00	0.00	0.01	0.00	0.09	0.04	0.03

表7

种示踪剂的延缓系数R₁代入公式(2)中,得 到它们的分布系数K₄,见表 6。

3.回收额。注入土柱的示踪剂,由于在 所试验的砂土中发生不可逆吸附,因此流出 的示踪剂的数量与加入的示踪剂的数量不相 等,两者之比即为回收额(W),以下式表示。

 $W = \frac{\sum V_i C_i}{V_i C_i}$ (7), 式中, C_i为第i

几种示踪剂的回收额

-		Marco Statements		Internet Constructs are se
土柱	^{8 2} Br	131 I -	⁵¹ Cr-EDTA	Eosin
1	0,90	0.65	1.00	0,95
2	0.77	0.76	0.82	0.77
3	0,84	0.62	0.80	0.58
4	0.84	0.79	0.80	0.46
5	0.83	0.61	0.78	0.95

个水样中的浓度, V_i 为第i个水样的体积, C_i 为注入第I种示踪剂的浓度, V_i 为注入第I种示踪剂的浓度, V_i 为注入第I种示踪剂的体积。

五种砂土中所用的 Y射线示踪剂和 Eosin 的回收额列于表 7 中。对非活性离子,回收额 的值具有较大的误差($\Delta W > 0.3$),因为所用敏感电极的精度可能降低。在测定Uranin(测量 系列 I 中)的回收额时,发现Eosin(测量系列 I 中)在土柱中仍有少量残留,出现干扰,以致 使Uranin的回收额值无法确定。

(二) 评价

我们以佩水作为参照示踪剂,研究了^{*1}Cr-EDTA, ^{**}Br⁻, ^{1*1}I⁻, Cl⁻, NO₃⁻, Uranin和 Eosin 示踪剂在西德南部五种砂土中的行为。它们在相当大程度上满足前面提出的要 求:(1)在这些示踪剂所用的浓度范围,它们可以很好地与水混合;(2)它们对土壤的物理性 质没有影响,除土柱 2 因装填的关系变紧实外,其余土柱的容量和孔隙率均保持不变;(3)这 些示踪剂在化学上是稳定的,经过大量稀释后仍可测量。

由于土壤的吸附作用,这些示踪剂在不同的砂土中大都出现延缓(表 5)。当 延 缓 系 数 R_t \leq 1.05时,认为这种示踪剂是理想的,将它代入公式(2)中,则得分布系数K_d \leq 0.01cm³/ g。从各种示踪剂在五种砂土中的延缓系数(表 5)和分布系数(表 6)看出,对于这几种砂土, 只有卤族离子($^{82}Br^{-}, ^{131}I^{-}$ 和 Cl⁻)保持理想的行为。 ^{51}Cr -EDTA 有微小的延缓(1.06 R_t \leq 1.2,0.01cm³/g \leq K_d \leq 0.02cm³/g)。NO₃⁻在两种砂土(土柱 3 和 4)中表现为理想的, 在其余三种砂土中,NO₃⁻被延缓(1.4 \leq R_t \leq 1.8)。荧光染色剂Uranin(1.2 \leq R_t \leq 2.0)和 Eosin(1.2 \leq R_t \leq 8.2)呈现出较大的延缓,所以,在这些砂土中,不能作为保守的示踪剂加入。

示踪剂的回收额(表 7)表明, ⁸²Br⁻, ¹³¹I⁻, ⁵¹Cr-EDTA和 Eosin 的回收额W, 在所 有土柱试验中都低于100%,还有不同数量的示踪剂遗留 在 土 壤 中, 如 ⁸²Br⁻, W \leq 90%, ¹³¹I⁻, W<80%, 但它们并没有表现出延缓($R_t \leq 1.05$, $K_a \leq 0.01$ cm³/g), 因此,仍是比较 理想的示踪剂。 (下转第202页) 产量,都较未施锌植株有不同程度的增加。但这种增加是随着土壤盐渍化程度的 提 高 而 降 低。其中,当土壤为轻度盐渍化(含盐量 < 0.403%)时,施锌植株干物质产量增加25.1~ 15.4%;当土壤盐分含量上升到中度盐渍化程度(0.422~0.473%)时,施锌植株受到土壤盐 分的轻度抑制,其增产量下降到15.6~11.6%;当继续提高土壤盐分含量到0.553%以上时,施 锌与不施锌植株都发生死亡现象,由此施锌效果几乎消失(干物质产量只增加0.8~1.5%)。 这一结果与 Б.А.Яголин (1980)等人的试验结果基本相符^[2]。

三、小 结

综上所述可以初步认为,施锌肥能使盐渍化条件下玉米植株的吸锌量显著增加,使玉米 植株的缺锌症状得以缓和,受盐分危害的程度减轻,从而,使干物质产量增加,但这种增加 是随着盐渍化等级的提高而递减的。其中,在轻度盐渍化时(土壤含盐量<0.40%)施锌有良好 的增产效果,在中度盐渍化时(含盐量0.422~0.473%)施锌有一定的增产效果,继续提高盐 渍化等级(含盐量0.55~0.66%)时,其效果甚微或无效,尽管施锌也能在一定程度上提高植 株中含锌量。

参考文献

- (1) B.A. 亚戈金等(芦浦济泽)盐渍化条件下铜、锌、钴、碘对氮磷代谢和棉花产量的影响。土壤学进展, 5:28—31, 1983。
- (2) Б.А.Ягодин, Г.ПЗадорожнин, К.Халилов, Агрохимия, 5:72-78, 1984.

〔3〕贺涤新。植物的耐盐力。盐碱土的改良和利用,49-51,甘肃人民出版社,1980。

(上接第193页)

参考文献

- [1] Klotz, D.: Studies in Environmental Science, 17: 707-713, Elservier, Amsterdam-Oxford-New York, 1981.
- [2] Mayer, S. W. and E. R. Tompkins: J. Amer. Chem. Soc., 69: 2866-2874, 1947.
- [3] Kaufmann, W. J. and G. T. Orlob: J. Amer. Water Works Assoc., 48: 559-572 1956.
- [4] Klotz, D. and W. Rauert: Erfahrungen mit tritinmhaltigem Wasser als Tracer bei Laborversuchen an fluvioglazialen Kiesen. In Beitraege ueber hydrologische Tracermethoden und ihre Anwendungen, GSF-Beiricht R 290: 30-36, 1982.
- [5] Klotz, D.: Verhalten hydrologischer Tracer in ausgewehlten fluvioglazialen Kiesen, Hangschutt-Kiesen und tertiaeren Kiesen-Sanden aus Bayern. In Britraege zur Geologie der Schweiz. Hydrologie, Bd. 28 II, 245-256, 1982.
- [6] Knutsson, G., Ljunggren, K. und Forsberg, H. G.: Field and laboratory tests of Chromium-51-EDTA and tritium water as a double taacer for groundwater flow. In Radioisotopes in Hydrology, IAEA, Wien, 347-363, 1963.
- [7] Behrens, H. und K. P. Seiler: Hydrogeologische Erfahrungen mit Tracern in quartaeren Kiesen oberbayerns. In Traceruntersuchungen in Hydrogeologie und Hydrologie, GSF-Bericht R 250: 51-73, 1980.
- [8] Klotz, D.: Saculenversuche zur Bestimmung von bodenphysikalischen Kenngroessen bei wassergesaettigtem Fliessen. GSF-Bericht R 189: 27, 1979.

2**02**