用聚类分析法研究土类和母质 对背景值的影响

潘佑民 吴定安 黄璋*

戎捷 杨国治

(湖南环保所)

(中国科学院南京土壤研究所)

讨论影响土壤中化学元素地球化学背景值因素的文章虽时有报道^[1-3],但它们大多是从定性的角度进行讨论的。本文拟将数理统计中的多元分析技术——聚类方法——用于研究湖南省境内土类和母质对土壤中 Cu、Ni、Co、As 四个元素含量的影响程度。以不同土类不同母质的土壤样品为观察单元,以元素含量为观察指标的聚类结果表明,土壤中元素背景值主要受成土母质母岩的影响,而受土壤类型的影响则是次要的,不明显的。

一、影响土壤背景值的主要因素

地质(母岩)、气候、地形、生物和时间等因素不仅影响土壤的形成过程,而且还影响和制约着土壤中化学元素的自然含量,但各因素的影响程度和结果并不是等同的。母质母岩是土壤形成的物质基础,是土壤中化学元素的源泉;气候因素决定着土壤的发育方向和过程。这两个因素,在生态学中被认为是状态因子,其作用是第一位的。地形、生物和时间的影响,被认为是转换因子,它们的影响受控并响应于气候条件和地质环境,因而其作用是第二位的。因此,本文运用聚类分析方法研究土壤中化学元素自然含量的影响因素时,只局限于土类和母质母岩这两个因素。

二、样品的来源与预处理

供研究的48个样品系由"湘江谷地土壤背景值协作组"提供的,它们采自湖南省内的不同土类、不同母质和不同的地形部位。从土类上来说,包括红壤、黄壤、山地黄棕壤、山地草甸土和水稻土。从成土母质母岩来说,有花岗岩、石灰岩、玄武岩等岩石风化物及第四纪红色粘土。根据"六·五"国家重点科技攻关对土壤背景值研究的要求,采样点尽可能选在未受人类活动影响的地方。从海拔高度来说,从1600米(山地草甸土)到100米 (第四纪红色粘土)内的不同高度都设置了采样点。因此,样品具有相当的代表性。土样均采自土壤表层,在室内铺开自然风干后,挑去植物残体和砾石,用玛瑙研钵磨细过筛备用。Cu、Ni和Co元素的分析,采用王水-高氯酸-氢氯酸消化,用原子吸收光谱测定,As 元素的测定是用浓盐酸浸泡土样,经处理后用原子荧光光度计测定。

三、聚类分析方法的具体应用

简单地说,聚类分析方法是依"大异而分群",据"小异而聚类"的原理而建立的。在本研

[●] 黄璋同志现在广东省环监站工作。

序 号	样品编号	土 类	母质母岩	Cu	Ni	Co	As	距离值 D(a ₁ ,a _j)
a ₁	CRG1-47		花	14	11	4.0	5.28	0 (I)*
a ₂	CRG ₂ -48	红	16	25	22	7.0	14.73	18(I)
a ₃	CRG ₃ -49		岗	15	19	6.0	6,43	9(1)
a ₄	CRG7-415		ν.	20	16	8.0	12,95	11(1)
a ₆	CRG8-416	壤	岩	20	10	7.0	8,67	7 (1)
a ₆	CRG ₉ -417			40	24	10.0	7.53	29(1)
a ₇	CRF ₂ -34		第	33	32	6.0	32.05	39(1)
a ₈	CRF ₃ —35	紅		32	26	11.0	19.31	29(1)
ag	CRF ₄ —36		虹虹	30	36	19.0	15.14	34(1)
a ₁₀	CRF ₅ —37		6 .	24	32	11.0	16,43	27(1)
ali	CRF ₈ -38	壤	粘土	25	27	11.0	17.56	25(1)
a ₁₂	CRF7-39		-	33	38	15.0	18.74	38(1)
a 13	XRL ₂ -100		石	40	57	21	34.94	60(T)
a ₁₄	XRL3-101	紅		25	70	17	35.00	68(1)
2 ₁₅	XRL4-102		灰	35	42	20	21.45	44(1)
216	XRL5-103		2	37	49	29	55.19	71(I)
a ₁₇	XRL6-104	壤	岩	50	115	23	40.0	115(][
218	XRL10-108		4	37	66	27	24.0	67(▮)
a ₁₀	XRE1-127		玄	60	131	40	5,28	134(IV)
a ₂₀	XRE2-128	红	•	67	111	66	3.39	129(ĮV)
a ₂₁	XRE3-129		武	50	107	35	11.09	106(IV)
a ₂₂	XRE6-132		-	72	270	70	96.68	288([♥)
a ₂₃	XRE7-432	埬	岩	39	55	30	12,82	120(17)
a ₂₄	XRE8-430	ļ	43	59	123	12	12,41	121(IV)
a ₂₅	CPG1-20			15	8.0	6.0	7,60	11(I)
226	CPG ₂ -21	水	花	20	12	7.0	8.40	6,3(1)
a ₂₇	CPG ₃ -22			25	12	7.0	10.73	7.1(1)
a ₂₈	CPG ₅ -24	稻	岗	17	21	10	2,57	12(1)
a ₁₉	CPGe-25			17	16	13	6.47	9.0(1)
a ₃₀	CPG7-26	土	岩	25	21	13	5.47	12(])
agı	ZYG1-243			22	25	9.0	19.97	12(1)
a ₃₂	ZYG2-134	黄	花	20	26	11	5,57	13(1)
a33	XYG3-135	^		32	14	13	22,6	17(1)
a ₃₄	XYG4-136		岗	20	23	4.0	20.39	11(l)
a ₃₅	XYG5-137	壤		3.0	11	1.0	11.09	19(I)
a ₃₆	XYG ₆ -138		岩	33	31	16	14,18	19(1)
a ₃₇	XMG1-160			23	26	12	11,58	12(1)
a ₃₈	XMG2-161	抽	花	20	24	27	14,27	20(1)
a30	XMG4-163	黄	岗	8.3	10	5.0	13.89	14(1)
240	XMG6-165	地黄棕壤	岩	17	17	7.0	7,91	6(1)
a41	XMG7-166	78		30	37	12	12,40	22(1)

序	号	样品编号	±	类	母质母岩	Cu	Ni	Со	As	距离值 D(a ₁ ,a _j)
a42		ZGG ₁ -241				16	29	12	16,93	15(I)
a43		ZGG ₂ -242	tl	1	花	17	27	5.0	25.73	19(I)
a44		XGG1-167	Ħ	<u>t</u>	i i	30	24	12	16.63	15(I)
245		XGG ₂ —168	Ę	ī	岩	29	31	9.0	18,16	18([)
246		XGG4-170	伯	Ī	1	27	24	16	14.86	14(1)
a47		XGG ₅ —171	L	_	₩.	25	28	10	11.87	15(1)
a48		XGG ₆ —172				20	23	9.0	14.32	11(])

^{*} 最后一项为分类结果

究中的具体作法是: 把样品作为观察单元; 而样品中化学元素的含量作为观察指标。如果以 a_i 表示第 i 个观察单元,以 C_{ik} 表示第 i 个观察单元 k 个观察指标,则两两观察单元之间的距 离为:

$$D(a_i, a_j) = \sqrt{\sum_{k=1}^{m} (C_{ik} - C_{jk})^2}$$

为简便起见,本文采用"原点距离聚类方法",即以某一观察单元(样品)作为原始点,与其它样品进行比较。本文选用 a_1 号(编号 CRG_1 —47)样品作为距离的原点,该样品具有各元素含量(观察指标)的加和值 $(\sum_{k=1}^{4}C_{1k})$ 最小的特点,具有放大差别的作用。而观察指标的选择,则应注意以下三点。

- 1. 各观察指标的值基本上应在同一数量级,以避免个别数量级大的指标对距离D(a_i, a_j) 值起决定作用;
- 2. 各观察指标的变化方向应基本上一致。逆向变化的指标应尽可能还选。因为逆向变化的指标使距离 D(a₁, a₁)值变小,不利于样品的分类。
- 3. 各观察单元之间的观察指标(元素含量)值应有明显可见的差别,即有较大的波动,才可以使距离 D值较大,便于分类。

根据以上考虑,我们选定Cu、Ni、Co和As四个元素在样品中的含量为观察指标,对48个样品进行聚类。

样品序号及其元素含量(ppm)和"距离"以及各样品的土类和母质母岩的称谓列于表1。

四、结果与讨论

将其它47个样品与"原点"样品 a_1 (红壤、花岗岩)的距离 $D(a_i, a_j)$ 值进行聚类,结果列于表 2 。

从表1和表2我们可以看出:

1. 落在第(I)类的28个样品的土壤,分别属于水稻土、红壤、黄壤、山地黄棕壤和山地草甸土等5个土类,但其母岩全部是花岗岩的,第(I)类的8个样品,只有两个不属于第四

分 类	类间距离	各类所含样品序号	土 类	母质母岩
(I)	D≤20	a ₁ ,a ₂ ,a ₃ ,a ₄ ,a ₅ ,a ₂₅ ,a ₂₆ ,a ₂₇ ,a ₂₈ ,a ₂₉ ,a ₃₀ ,a ₃₁ , a ₃₂ ,a ₃₃ ,a ₃₄ ,a ₃₅ ,a ₃₆ ,a ₃₇ ,a ₃₈ ,a ₃₉ ,a ₄₀ ,a ₄₁ ,a ₄₂ , a ₄₃ ,a ₄₄ ,a ₄₅ ,a ₄₆ ,a ₄₇ ,a ₄₈	红壤、水稻土、 黄壤、山地黄 棕壤、山地草 甸土	花岗岩
(1)	D>20 ≤40	a ₆ , a ₇ , a ₈ , a ₉ , a ₁₀ , a ₁₁ , a ₁₂ , a ₄₁	红壤、山地黄 棕壤	第四纪红色粘 土、花岗岩
(1)	D>40, D≤80	a ₁₃ ,a ₁₄ ,a ₁₅ ,a ₁₆ ,a ₁₈	红壤	石灰岩
(1 V)	D>80	a ₁₇ , a ₁₉ , a ₂₀ , a ₂₁ , a ₂₂ , a ₂₃ , a ₂₄	红壤	玄武岩、石灰岩

纪红色粘土发育的样品,占25%,第(\mathbb{I})类的 5 个样品,其母岩均为石灰岩,第(\mathbb{I})类的 7 个样品,有 6 个是玄武岩为母岩的,占85.7%。

- 2. 以花岗岩为母岩的30个样品,尽管分属五个不同的土类,但有28个聚于(Ⅰ)类,占93.33%;6个第四纪红色粘土为母质的样品,全部落在第(Ⅱ)类,为100%;6个石灰岩为母岩的样品有5个在第(Ⅱ)类,占83.33%;玄武岩为母岩的6个样品,100%地聚类于第(Ⅳ)类。这说明按母质母岩不同对样品进行分类,符合率不低于80%。
- 3、24个红壤样品,分散于(Ⅰ)、(Ⅱ)、(Ⅱ)、(Ⅵ)四个类,大致上是平均分配,每类5—7个样品。聚于(Ⅰ)的样品,有水稻土、红壤、黄壤、山地黄棕壤、山地草甸土等,但全为花岗岩母岩。

可见,以距离聚类方法对48个不同土类、不同母质母岩和不同海拔高度的样品进行聚类, 其分类结果与样品所属的母质母岩相符合,符合率不低于80%。样品的距离分类与按土类的 分类完全不符合。这表明,成土母质母岩对土壤中金属元素含量的影响,远远大于土类的影响。因此,调查研究土壤背景值时,对于样点的分布和统计单元的划分,首先应考虑土壤母 质母岩的影响。

参考文献

- [1] 杨国治, 天津地区土壤环境中若干元素的群分析。环境科学学报, 第3卷, 3期, 1983。
- [2] 楊学义, 南京地区土壤背景值与母质的关系。环境中若干元素的自然背景值及研究方法, 科学出版社,1982。
- [3] 中國科学土壤背景值协作组,广东省区域土壤中某些元素的自然背景值。环境中若干元素的自然背景值及研究方法,科学出版社,1980。
- [4] 黄正南等,医用多因素分析,湖南科学技术出版社,1980。