山东寿光滨海平原碱化土壤的研究*

季立声 郭立友 张银光 (山东农业大学)

摘 要

本文介绍了寿光滨海平原碱化土壤的形成、分布、特性。

山东寿光北部滨海平原位于渤海莱州湾西岸,以10米等高线为其内界,则总面积达1300 余平方公里。这里原是一片滨海滩涂和滨海泻湖,后经近代河流淤积,海退后又受海潮多次侵袭而成。主要土壤类型有滨海盐土、滨海潮土和滩地盐土。50年代起,先后建立了若干国营农场,其中有些地方还发展过引水灌溉,使部分高程在3.5米以上的土地得到改良利用。随着土壤脱盐,土壤的碱化现象有所发展。据抽样调查,一些未经改造的砂壤质脱盐土壤碱化现象十分普遍,其中表现出明显不良性状的约占15—20%,使作物生长受阻,甚至造成缺苗断垄,是本地区当前进一步提高产量的限制因素之一。为开发利用这类土壤资源,开展滨海碱化土壤的研究是有其现实意义的。

一、碱化土壤的分布

滨海平原是否有碱化土壤,一度曾引起人们的争议,通过对寿光北部的滨海平原土壤的 观察研究,确认有碱化土壤存在。

碱化土壤存在于已被人们开垦利用的脱盐土壤——滨海潮土中,并以斑状与其插花分布, 斑块的大小不一,大者10余亩,小者不及一亩,一般为0.5一1亩。斑状的形状很不规则,常 随小地形的变化而变化,以条带状和椭圆状为多。碱化土壤的分布有几个明显的规律可循:

- 1. 碱化土壤主要分布于微地形中的高地、缓坡地和坎坷不平的部位。表明碱化土 壤的分布与微地形的关系十分密切。
- 2. 质地对碱化进程有明显影响。据在广饶北部滨海平原调查,凡表层有50厘米以上粘土层的滨海潮土区则无碱化土壤分布,碱化土壤只分布在砂壤土地区。
- 3. 耕作粗放、熟化程度差的土壤易发育为碱化土壤。因此田头地边机耕质量差的 和 脱盐开垦不久、未经施肥、深耕改良的土壤,其碱化程度都高于周围土壤。

二、碱化土壤的形成

关于碱化土壤的形成,大致有以下几种学说,

1. 钠质盐土脱盐形成碱土;

本文承俞仁培先生市阅,郭立友,张银先为我校土化系83级学生。

- 2. 土壤长期处于积盐和脱盐交替进程,能使土壤发生碱化;
- 3. 碱化进程主要发生在弱矿化地下水条件下的草甸成土过程;
- 4. 低矿化碱性水的灌溉引起碱化:
- 5. 碱土形成与生物有关,认为草原地区的深根植物将钠盐带到土壤表层的结果。

上述各学说都是经过国内外一些学者的研究和模拟试验所肯定了的,但又都是以各自的特定条件为前提的。寿光滨海碱化土壤的形成、也是由其自身的特定条件所决定的。

(一)自然条件概况

寿光滨海平原地处暖温带半湿润季风气候区,据该县农业气象资料,年平均气温12.4℃日照时数2612小时,干燥度为1.2,降雨量645.5毫米,主要集中在夏季,占全年降雨量的66%,蒸发量为2140.9毫米,以5、6月份最强烈,蒸降比约3.3。

整个地形由南向北缓慢倾斜,地貌类型主要为滨海浅平洼地,其下部为海相沉淀,上部 覆盖河相沉积物,由于河流多次泛滥、沉积物交错,致小地形复杂。地下水埋深一般在2 米左右,近几年由于连续干旱少雨,地下水位在春季已降至3米或3米以下,矿化度仍在20 克/升以上,水化学类型为钠质氯化物水(表1)。

寿 光 地 下 水 水 质 分 析

样品号	埋深	рН	矿化度	高 子 组 成 (茲克当量/升)							
14 HH 2	(米)	p11	(克/升)	HCO3	Cl-	SO ₄	Ca2+	Mg2+	K+ + Na+*		
北六③碱化土壤	3.10	8.2	40.01	9.90	670.50	23.20	17.20	149.60	536.80		
北二③砹化土壤	3,05	8.3	35.77	15.56	594.00	18.80	17.20	144.00	467.16		
北二①滨海湖土	3,15	8.2	27.23	10.61	439.50	24.00	15.20	94,00	346.91		

^{*} K++Na+系差数,下同。

土壤形成除受高位、高矿化地下水作用外,还受海潮侵渍的影响。据记载,1890年高潮 侵入内地40—50公里,淹没边界相当于目前地面高程7.5米处,1938年高潮侵入内地约30公里,淹没边界相当于目前地面高程5.0—5.2米。

综上所述,滨海地区土壤在高水位、高矿化的地下水和海水参与下形成含中性钠盐很高 的滨海盐土和滩地盐土。

(二)碱化土壤的形成

对于寿光滨海平原的盐土脱盐后,是否一定形成碱土,目前根据虽然还不够充分,但有一点似乎是肯定了,即砂壤质滨海盐土在其脱盐过程中,都会不同程度地发生碱化现象。我们做了一个简单的模拟试验:将砂壤质滨海盐土按容重1.35分装在两个内径为5厘米、高为15厘米的玻璃管中,参照滨海盐土的冲洗定额,分别用1000毫升和1500毫升蒸馏水淋洗,然后分析其化学组成,结果列于表2。

表 2

滨海盐土经淋洗后盐成分的变化

	C L.=			离子	总破度 残余碳酸钠					
处	理	pН	C1-	SO ₄ -	HCO3-	Ca2+	Mg2+	K++Na+		当量/100克土
淋洗前	<u> </u>	7.4	77.3	2.08	0.47	3.13	18.27	54.45	0.47	/
经1000总升	水淋洗后	8.5	0,3	0.11	0.78	0.32	0.22	0.65	0.78	0.24
经1500还升	水淋洗后	8.5	0.3	0.07	0.71	0.32	0.18	0.58	0.71	0,21

结果表明: 钠质盐土在冲洗脱盐后,大多数离子都减少了,但HCO。-离子却增加了,因而pH值、总碱度和残余碳酸钠都增加了,这一结果与国内外一些学者的研究是相吻合的。

事实上,本文所说的滨海潮土,即已脱盐的一般农田,都有不同程度地碱化现象。不管它们原先是由盐土经引水冲洗脱盐的或利用雨水淋洗脱盐的。表 3 是两个已脱盐开垦利用的土壤剖面的碱化情况。

表 3 两个脱盐 显 种土 壤 的 可 溶 盐 及 代 换 性 能 状 况

剖面号	层 次	pН	全 盐	_	离子	组成(語	医克当亚	1/100克	(土)		阳离子*	代 换性 钠	, 破化度
	(厘米)		%	CO ₃ -	HCO3	Cl-	SO ₄	Ca2+	Mg2+	K+ + Na+	亞克当 显	/100克土	%
南四(3)	0-5	8.80	.0.18	0	0.96	1.35	0.34	0.32	0.31	2.02	4.23	0.20	4.47
由雨水	515	8.78	0.15	0.16	0.80	1.17	0.19	0.16	0.31	. 1.85	4.23	0.20	4.75
淋洗脱	15-30	9.00	0.16	0.12	0.97	1.29	0	0.17	0,18	2.03	4.98	0.72	14.46
盐	30-50	9.08	0.17	0.24	0.85	1,58	-0	0.27	0.10	2,30	3.48	0.87	25.00
	70—90	9,06	0.17	0.16	0.52	1.90	0.11	0.16	0.23	2,30	2.99	0.36	12.04
	110-130	9.11	0.20	0.15	0.75	2,27	0.02	0.12	0.32	2,75	1.24	0.65	52,42
北六(2)	0-5	8.82	0.12	0	0.61	1.13	0.04	0.25	0.15	1.38	4.48	0.20	4.46
由引水	5—15	8.80	0.13	0	0.80	1,18	0	0.22	0.09	1.67	5.47	0.36	6.58
冲洗脱	15-30	8.65	0.20	0	0.76	2.46	0.05	0.23	0.17	2.87	4.98	0,65	13.05
盐	3050	6.42	0.33	0	0.69	4.45	0.29	0,35	0.61	4.47	4.48	1,09	24.33
	70—90	8.80	0,20	0	0.67	3.91	0.14	0.18	0.34	4.20	1.74	0.87	50.00
	110-130	9.28	0.31	0	0.71	4.01	0.21	0.12	0.15	4.66	1.49	0.87	58.39

^{*} 阳离子代换从采用查哈尔楚克法,下同。

盐土在冲洗或淋洗过程中之所以发生碱化现象,是由于代换性钠与土壤中的CaCO₃和水中的CO₂作用的结果。

脱盐过程中使土壤产生一定程度的碱化,但不一定形成碱土。

三、碱化土壤的性状

碱化程度轻的土壤,无明显的不良性状,仍可种植庄稼,但植株生长矮小、瘦弱;碱化程度重的只能生长碱蓬等耐碱植物,甚至寸草不长,成为光板地。

典型的碱化土壤,其表层多为厚约 2 厘米的灰白色硬壳,硬壳背面多有蜂窝状气孔,质地以轻壤为最常见,往下土体渐转成暗褐色,一般无明显发生层次,但碱化程度重的,此层显得非常僵硬,并成棱块状结构。约在剖面50-60厘米以下,质地渐成砂壤,颜色转淡,并逐渐有锈斑出现,有的尚能见到蛤皮或螺壳。

典型碱化土壤的容重较一般土壤都高(表 4)。

表 4 碱 化 土 壤 与 一 般 土 壤 容 重 比 较

剖面号	土 堰 类 型		土层	深 度 (厘米)	
HU DEL T		15-30	30—50	50—70	70-90
北六 (2)	一般土壤	1.35	1.36	1,27	1.31
北六 (3)	典型碱化土壤	1,54	1.56	1.53	.1,53
南四 (3)	一般土壤	1.40	1,38	1.45	1.46
南四 (1)	典型碱化土壤	1.44	1,50	1,50	1,52

由于代换性钠的分散作用,典型碱化土壤的物理性质很差,表现为干时坚硬,群众称"刚碱",有时出现黾裂,裂隙宽达 1—1.2厘米,深约10厘米;湿时泥泞,透水性极差。据室内模拟试验,将典型碱化土壤、滨海盐土和一般脱盐土壤分别按前述的淋洗方法装成10厘米高的土柱,土柱上面保持 2 厘米深的水层,7个半小时后,记录每小时平均渗水量,结果表明,滨海盐土和一般脱盐土壤的渗水量分别为48.86和53.57毫升/小时,而典型碱化土壤竞滴水未漏。

典型碱化土壤的化学分析结果列于表 5。

表 5 典型碱化土壤可溶盐及代换性能状况

剖面号 层 次 pl		pН	全盐		商	子组成(亞克当	盘/100	克土)		阳离子 代换量	代 换性 钠	碱化度
		%	CO ₃ ²	HCO3	CI-	SO ₄	Ca2+	Mg2+	K+ + Na+	·		E %	
北六(3)	0-5	9.58	0.13	0.16	0.58	1.06	0.11	0.04	0.03	1.86	6.74	2.10	31.16
引水冲洗	5—15	9,62	0.13	0.08	0.63	1.02	0.13	0.04	0.03	1.79	9.45	2.17	22.96
脱盐	1530	8.82	0.20	0.04	1.42	1,25	0.02	0.07	0.04	2.62	11.45	2.90	25.32
	30-50	9.70	0.19	0.16	1,30	0.95	0.24	0.22	0.01	2,42	8,96	4,35	48.55
	70-90	9.80	0.13	0,16	0.56	1,29	0.05	0.04	0.03	1.99	4.98	1.81	36.35
	110-130	9.86	0.13	0.08	0.52	1.35	0.03	0.04	0.03	1.91	4.98	2.17	43.57
南四(1)	0-5	9.44	0.34	0,28	1.16	3.79	0.16	0,13	0.05	5,21	2.99	2,17	72.58
雨水淋	5—15	9,26	0.48	0	1.04	6.57	0.12	0,11	0.10	7.52	3.98	2.25	56.53
洗脱盐	15 <u>-</u> 30	9.28	0.29	0.08	1.04	3,26	0.10	0.13	0.14	4.21	4.48	2.17	48.43
	3050	9.60	0.24	0.16	1.04	2.38	0.15	0.08	0,13	3.52	3.48	2.54	72.99
	70-90	9.80	0.22	0.44	0.95	2.00	0	0.13	0.06	3,20	2.99	1.59	53.18
	110-130	9.78	0,25	0.40	1.16	2.29	0	0,11	0.07	3,67	2,99	1,45	48.49

由上表可知,根据pH值、离子组成(含总碱度、残余碳酸钠)或碱化度等各种碱化指标,证明山东寿光滨海平原确有碱化程度很高的土壤存在。

参考文献

- [1]中国科学院南京土壤研究所盐土室, 瓦酸的形成及其改良, 盐渍土改良论文选, 山东科技出版社, 1979。
- [2]俞仁培等, 瓦碱的形成与改良, 土壤学报, 第1期19卷, 1982。
- [3]俞仁培等, 土壤碳化及其防止, 农业出版社, 1984。