中性载体钙离子选择性电极的性能和应用

王敬华

(中国科学院南京土壤研究所)

重量法或容量滴定法是测定土壤或天然水中钙含量的经典方法。但容量法中有时由于样 品混浊或带有颜色,使终点难以辨别,以致误差较大。近年来,随着离子选择性电极的发展, 钙电极已用于土壤或水中的含钙量的测定。

最早用于钙电极的电活性材料为有机磷酸盐(Ross, 1967)。后来(Ammann et al., 1972) 合成了一种中性载体 ETH—1001, 钙电极的性能得到了改良。近年来又合成了一种抗氢离子性能更好的中性载体ETH—129。

国内较早制造的钙电极是用国产双(2—乙已基)磷酸(P₂₀₄)作电活性物质,苯基磷酸二正庚酯为溶剂。由于这种电极的适用pH范围一般在4.5—5以上,而有些土壤的 pH 值往往低于此值,这就使钙电极在土壤中的直接应用受到了限制。为了寻求一种适用的 pH 下限更低的钙电极,我们应用中性载体的商品ETH—1001和Simon寄赠的ETH—129为电活性材料做成了PVC膜钙电极,并与国产的以2—异辛基苯基磷酸为电活性材料的PVC膜钙电极(苏州计量局工厂生产)进行了比较。

一、电极的制造

(一) **胰材料的组成** 电活性材料(ETH—129或ETH—1001) 2 %; 增塑剂O-NPOE(磷硝基苯辛醚)64.5%; KTpCIPB(对氯四苯硼钾)0.7%; PVC粉32.8%。

(二)制造程序

按上述的重量百分比分别称重,放入10毫升的小烧杯中,加入四氢呋喃,搅拌,使其溶解。待溶液澄清透明后,放置使其挥发,至体积近4-5毫升时,小心地将液溶倒入一底面平整的直径为38毫米的铝盒内,用少量的四氢呋喃洗涤小烧杯3-4次,再用细玻璃棒在盒内轻轻搅动,使其混匀。然后,在铝盒上盖以滤纸,放于通风橱中使挥发。1-2天后即得透明或半透明的PVC膜,备做电极之用。

用打孔器切下与电极腔体直径相同的一圆片PVC膜,将6%PVC四氢呋喃溶胶在电极腔体的末端涂3—4次,待溶胶将干时,把敏感膜放上,压平,使园片的边缘与腔体末端的边缘吻合。待干后(24小时左右),在电极腔体中注入数毫升0.1 MCaCl₂溶液,插入Ag-AgC¹内参比电极,接好导线,并装好电极帽。使用前将电极在 $10^{-2}M$ CaCl₂溶液中活化2—3小时。

二、电极的性能

(一)响应时间 三种电极在10⁻⁶MCaCl₂溶液中的响应时间为,ETH—129为电活性材料的电极在30秒到1分钟接近平衡值,到5分钟时电位读数有1毫伏左右的变化;ETH—1001为电活性材料的电极在1分钟后也接近平衡值;而以2—异辛基苯基磷酸为电活性材料的电极在5分钟后电位读数仍有上升的趋势。在10⁻⁴M的CaCl₂溶液中,以ETH—129和FTH—1001为电活性材料的电极在1分钟后都达到平衡值,而以2-异辛基苯基磷酸为电活性材料的电极需在2分钟后才达到平衡值。在10⁻⁸M及10⁻²M的CaCl₂溶液中,三种电极的响应时间虽无明显的差异,但仍以ETH—129的电极的响应较快。

(二)选择性 在 $0.1MCaCl_2$ 、 $MgCl_2$ 、KCl、NaCl、 NH_4Cl 和 HCl 溶液中测定三种电极的电位,并计算出电位选择性系数,结果见表1。

K_{Ca} , Na	K _{Ca} , _K	K _{Ca} , _{NH4}	K _{Ca} , _{Mg}	$K_{Oa,H}$
1.95 × 10 ⁻⁴	7.24×10^{-5}	4.47×10 ⁻⁶	9.77×10 ⁻⁵	1,10×10 ⁻⁴
1.62×10^{-3}	6.03×10 ⁻⁴	5.37×10 ⁻⁴	7.24×10 ⁻⁴	3.31×10 ⁻⁴
1.58×10^{-3}	7.94×10^{-4}	1.78×10 ⁻³	5.13×10 ⁻³	3.09×10^{-3}
	$K_{Ca, Na}$ 1.95×10^{-4} 1.62×10^{-3}	K_{Ca} , Na K_{Ca} , κ 1.95 × 10 ⁻⁴ 7.24 × 10 ⁻⁵ 1.62 × 10 ⁻³ 6.03 × 10 ⁻⁴	K_{Ca}, Na K_{Ca}, K $K_{Ca}, NH4$ 1.95 × 10 ⁻⁴ 7.24 × 10 ⁻⁵ 4.47 × 10 ⁻⁵ 1.62 × 10 ⁻³ 6.03 × 10 ⁻⁴ 5.37 × 10 ⁻⁴	$K_{Ca,Na}$ $K_{Ca,K}$ $K_{Ca,NH4}$ $K_{Ca,Mg}$ 1.95 × 10 ⁻⁴ 7.24 × 10 ⁻⁵ 4.47 × 10 ⁻⁵ 9.77 × 10 ⁻⁵ 1.62 × 10 ⁻³ 6.03 × 10 ⁻⁴ 5.37 × 10 ⁻⁴ 7.24 × 10 ⁻⁴

表 1 三种 PVC 膜 钙 电 极 的 电 位 选 择 性 系 数 (K_M, N)*

由表 1 可见,三种电极对氢或镁的选择性的次序是ETH—129 < ETH—1001 < 2-异辛基 苯基磷酸。两种中性载体的电极对氢或镁的选择性都与辛基苯基磷酸的电极 相差 一个数量级。这在土壤研究中具有重要的意义。

三种电活性材料的钙电极的电位与 pH 的关系的曲线上的坪区是不 同的 (图 1)。对用 ETH—129做成的电极,当 Ca Cl₂溶液的浓度为10⁻⁴ M时,在 pH3.5以上电位不变。ETH—1001的电极,在 pH4.7以上电位不变,而2-异辛基苯基磷酸的电极则仅在 pH5.0以上电位不变。pH高于 8 时电极电位的降低是由于溶液中钙离子的活度减小所致。

当 $CaCl_2$ 溶液的浓度为 $10^{-3}M$ 时,三种电极的电位不变的 pH 下限分别为3.5、3.7和pH 4.7。这些结果表和,以ETH—129和ETH—1001为电活性材料的 PVC 膜钙电极的适用pH 下限要低于以 2 -异辛基苯基磷酸为材料的电极。

			1
	钙(毫克/50毫	升) ——————————	- 回收率(%)
加入位	拉出饭	回》收 盘	42400
0	1.66*	0	0
1	2.64	0.98)8
2	3,78	2.12	106
4	5.60	3.94	98.5
5	6.64	4.98	99.6
6	7.68	6.02	100.3

表 2 标准溶液中钙的回收率

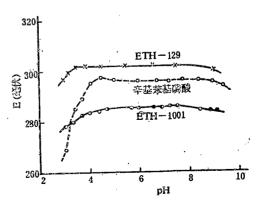


图 1 三种钙电极在不同pH的CaCl₂溶液 中的电位曲线(10⁻⁴MCaCl₂)

^{*} 分别溶液法

^{*} 溶液中原有钙量。

(三)钙的回收率

- 1. 标准溶液: 吸取一定体积的钙标准液,加入不同量的钙,用标准添加法测定。测得钙的回收率为98—101%(表 2)。
- 2. 土壤提取液:土壤分别用10倍的水或0.1MKCl溶液提取。吸取一定体积的提取液,加入一定量的钙,用标准添加法测定钙的总量,结果列于表3和表4,钙的回收率达94—105%。

表3	几种土壤水液溶中钙的回收率	<u> </u>
120	儿童上级小风度宁万时出入年	-

表4 几种土壤的KCI 浸提液中钙的回收率

						manufath as a as		-		
钙(毫克/100克)		 回收率	土 壊	钙(亞	Ed ille state (O/)					
土 墺	土壤 原含量	加入显	测出位	回收量	(%)	- 現	土壤原含显	位人赋	测出显	回收率(%)
红蜒	13.6	1.6	15.2	1.6	100	红塅	39.3	3.2	42.3	94
红壤性水稻土	0.31	0,16	0.47	0.16	100	红坡性水稻土	6.92	1.6	8.60	105
水稻土	0.32	0,16	0.48	0.16	100	水稻土	4.91	1.6	6.51	100
红塅	0.20	0.16	0.36	0.16	100	红墩	6.48	8.0	14.2	97
黄棕壤	0.74	0.16	0.90	0.16	100	黄棕墩	16.3	3,2	19.6	103

表 5 土 壤 和 天 然 水 中 钙 的 含 量 (标 准 添 加 法)

样 品 地 点	lui.	بيل	母	质	钙(毫克/100克)						
	DF	灰	水	溶	性		交	换	性		
红壤	云南	鬼 明	石灰岩		0	.29				170	
红壤性水稻土	广东	丁 湖 山	砂岩风化	七物	0	.062		}		20	
水稻土	广东	中罗	花岗岩风化物		0.07			5			
红坡	江西:	步 贤	您 国纪红色粘土		0.035			16			
黄棕壤	江苏:	有京	7 獨黄土		0.17			64			
水					1	47*					
自来水					4	9*					

^{*} 单位为忞克钙/升

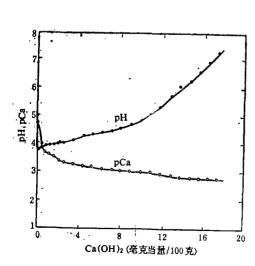


图 2 红壤胶体的滴定曲线

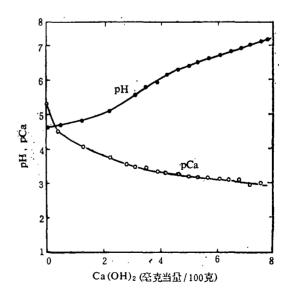


图 3 砖红壤胶体的滴定曲线 (下转第147页)

(三)充分利用旱坡地发展旱粮、豆类和烟草作物

火山灰土地区除砾石多的应发展水果和营造林外,开辟耕地发展粟类、玉米、高粱等早粮和黑豆、芝麻等作物十分必要,最近引种成功烟草,长势良好,达到量高质优,可望成为我省烟草生长基地,这也是充分利用旱坡地的途径之一。

(四)扩种豆科饲草绿肥、促进畜牧业的发展

火山灰土地区土地肥沃,小灌木、草类生长茂盛,农民历来有饲养草食性牲畜的习惯。要充分利用火山灰土山砾石特多、无法开垦的闲荒地,但适合牧草生长的特点,采用人工播种豆科饲草绿肥如格拉姆(Crahan)、库克(Gook)、矮柱花草(Stylosanthes Sudaica)、大翼豆(Sirotro)以及禾木科牧草等、变野生杂草为人工牧草、提高草地载畜量、发展草食牲畜。

(五)合理施肥 不断提高土壤肥力

针对火山灰土速效磷和全钾以及微量元素铜、硼含量低的状况,必须在发展豆科绿肥,施 用有机肥料的基础上,增施磷、钾肥和钼、硼等微肥,以利作物产量不断提高。

此外,火山灰土地区有大量火山砾石、火山弹和火山灰,是制造水泥好原料,埋藏于地下的玄武岩是建筑材料,应进行有计划的开采。

- (一)土壤中水溶性钙的测定 将土壤样品以1:10的土水比振荡半小时,过滤,吸一定体积的提取液,调节离子强度为0.1*M*,用标准添加法测定,结果见表5。如果测定各种天然水、工厂废水及生活用水中的钙,只需吸取一定体积,用电极进行测定。
- (二)土壤中交换性钙的测定 将土壤样品用0.1MKCl溶液以1:10的土水比振荡半小时,过滤。用标准添加法测定钙,并计算出土壤中的交换性钙量,结果见表 5。
- (三)**滴定曲线** 图2和图3分别为红壤和砖红壤胶体的pH和pCa的滴定曲线。对于两种土壤,假定其表观阳离子交换量在pH7时分别为每100克17.0和7.2毫克当量,则其相应的pCa值为2.77和2.93。

四、结 论

应用ETH—129和ETH—1001中性载体为电活性材料制成的PVC 膜钙电极,响应时间较快,适用的pH 下限较常用的以辛基苯基磷酸为电活性材料的钙电极为低。其他性能也颇为良好。这为研究土壤中钙的化学,特别是在田间测定土壤中钙的含量提供了良好的工具。这种电极已在土壤石灰位的研究中得到应用(Wang and Yu, 1986)。

参考 文献

- [1] 于天仁、张效年等编著,电化学方法及其在土壤研究中的应用,科学出版社,1980。
- (2) Ammann, D. et al., Calcium ion-selective electrode based on a neutral carrier, Anal. Lett., 5: 843-850, 1972.
- (3) Ammann, D. et al., Neutral carrier based ion-selective electrode. Ion-selective Electrode Rev., 5: 3-92, 1983.
- (4) Ross, J. W., Calcium-selective electrode with liquid ion-exchanger, Science, 156: 1378-1379, 1967.
- (5) Wang, J. H. and Yu, T. R. Lime potential of variable charge soils, Z. Pflanzenernähr. Bodenk, 149: 598-607, 1986.