DOI:10. 13758/j. cnki. tr. 1995. 01. 008

红壤上施石灰对硼的有效性及 油菜生长的影响^{*}

徐俊祥徐永福唐永良

(中国科学院南京土壤研究所)

摘 要

研究了两种盆栽红壤在不同石灰和硼水平下,对土壤有效硼和油菜生长的影响,并探讨了石灰对油菜钙、硼平 衡和钼营养的影响。

红壤旱地上石灰和硼配合施用,对油菜和花生有显著的互作增产效应。本文在过去田间试验^{11,22}的基础上,进行了油菜盆栽试验,系统研究了红壤上不同石灰和硼用量下,对硼的有效性,及对油菜生长和硼、钙、钼营养的影响。

一、材料与方法

供盆栽试验的 2 种红壤均采自江西余江县刘家站垦殖场,基本理化性质列于表 1。土壤经晾干,粉碎过 2mm 筛后装盒(每盆装土 3 千克)。

表 1	毌	试	+	增	押	11	杜	馬
700	27	111		- 701	址	17.	II	ли

土壤	母 质	pH	有机质 (g/kg)	<0.001mm 粘粒 (%)	全 硼 (μg/g)	有效硼 (μg/g)
红壤Ⅰ	第三纪红砂岩	4.7	6.0	13.1	29. 9	0.12
红壤『	第四纪红色粘土	4.6	7. 1	35.0	86.8	0.10

试验设计:红壤 I 设 4 个水平石灰用量,红壤 I 设 5 个水平,同一水平石灰用量下又设 3 个水平的硼用量,二个土壤各设无石灰和无硼的处理,石灰及硼用量见表 2。红壤 I 共设 13 个处理,红壤 I 共设 16 个处理(表 3),每处理 3 次重复,共计 87 盆。所用的硼肥为四硼酸钠(含 B 110 克/千克)。 土壤加入硼和石灰后 40 天播种,播种前,每千克土加 0.24 克磷酸二氢铵、0.32克硝酸钾、0.37 克硝酸铵和 0.05 克硫酸镁。供试作物品种为"79601"甘兰型油菜,用去离子水灌溉,10 月 20 日播种,80 天后收获(全株)。收获植株用去离子水洗尽后于 60 C下烘干、称重、粉碎后待用。收获后还采集每处理的 3 次重复混合土样,风干,过 1 毫米孔筛,测定土壤的有效硼(HWS-B)、pH⁶³³,水溶性钼(土水比 1:10,25 C 振荡 8 小时),并进行土壤硼的分

^{*} 本工作在刘铮研究员指导下进行。

表 2 各处理的石灰及硼用量

	石 灰 用 量		硼 用 量			
处理代号	g/kg 土	kg/亩	处理代号	硼 μg/g 土	硼砂 kg/亩	
L_0	0	0	Bo	0	0	
L_1	0.6	90	B_1	0.1	0.14	
L_2	1.2	180	B_2	0.5	0.68	
L,	2. 4	360	B_3	1.0	1. 36	
L.	4.8	720	_	_	_	

级测定[⊕];植物及土壤中硼和钼的测定分别用甲亚铵分光光度法^⑤和催化极谱法^⑥,用EDTA 容量法等测定植株中的钙含量。

二、结果与讨论

(一)石灰和硼对油菜干重的影响

表 3 表明,两种红壤在等硼用量下,当石灰用量在 2.4 克/千克(L₃)以下时,随石灰用量增 加,油菜干重增加 0.8-3.8倍,而不施石灰时,施硼与不施硼(B。L。)比较,干重增加 0.3-1.8 倍,但不显著;而等量石灰用量下,随硼用量的增加对于重的影响也不显著。硼与石灰配合施用 的各处理与 B₆L₆ 比较,油菜全株干重增加 2.5-7.5 倍,均达显著水准,由此证明了硼和石灰 在红壤上对油菜干重有显著的互作正效应。

表 3 还表明,在 3 种等硼用量下,不同石灰用量均以 L₂ 或 L₃ 处理的干重最高,但当石灰 用量增至 L, 时(红壤 I),油菜干重显著降低,因此在相宜的土壤条件下,石灰用量以不超过

石灰和硼甲量对油蓝全株干重的影响

衣 3	石火 和	哪用重对准	B来全株十里的影响		
	红块	E I	红壤『		
处 理	干重 ¹⁾ (g/盆)	5%显著 性**	干重 (g/盆)	5%显著性	
B_0L_0	0.49	d	0.59	g	
B_1L_0	0.95	cd	1.01	efg	
B_1L_1	1. 91	ь	2. 16	de	
B_1L_2	3. 89	a	3. 25	be	
B_1L_3	3. 92	a	4.39	ab	
B_1L_4			1. 30	defg	
B_2L_0	1.01	cd	1.68	defg	
B_2L_1	1.80	ь	2. 65	de	
B_2L_2	3, 81	a	3. 26	bc	
B_2L_3	3. 97	a	5. 03	a	
B_2L_4			1.30	defg	
B_3L_0	0.822)	cd	0. 78	fg	
B_3L_1	1.53 ²⁾	bc	3.40	be	
B_3L_2	3. 62	a	3.71	ь	
B_3L_3	3. 91	a	3, 34	bc	
B ₃ L ₄			1.82	def	

片出现砌中毒症状; ** 邓肯法显著性检验。

1.2 克/千克为宜。

油菜出苗约30天后,红壤 I 在高硼用量 下(B₃),不施或施少量石灰的,油菜叶片出现 硼中毒症状,说明酸性砂质红壤上施用 1.0 微克/克土的硼已显过量,而当石灰用量增大 到 1.2 克/千克(B₂L₂)时,中毒症状即行消 失,表明增加石灰用量,提高土壤 pH 可有效 的消除酸性土壤上的硼中毒现象的。

(二)施石灰对油菜硼营养的影响

土壤有效硼(HWS-B)和油菜全株硼含 量列于表 4。如表 4 所示,在加入等量硼的情 况下,砂质红壤 I 的有效硼含量大于粘质红 壤 Ⅰ, 当石灰用量为 1.2 克/千克时, 红壤 Ⅰ pH 为 5.7,红壤 Ⅱ 为 5.4。在该石灰用量下, 要达到土壤有效硼含量 0.5 微克/克左右时, 硼的加入量在红壤 I 应为 0.5 微克/克,红壤 注:1)各处理油菜全株干重3次重复的平均值;2)油菜叶 I 应为1.0微克/克,这时的油菜植株含硼量 在 38.6 和 32.1 微克/克,属正常的含硼值。

表 4 石灰和硼用量对油菜硼、钙营养的影响

	红壤工						红壤I				
处 理		植 株	-	土	壤		植株		土	壤	
代 号	B(μg/g)	Ca(mg/g)	Ca/B ¹⁾	HWS-B (μg/g)	рН	B(μg/g)	Ca(mg/g)	Ca/B	HWS-B (μg/g)	pН	
B_0L_0	16. 8h ²⁾	24defg	246a	0.12	4.7	13.0g	19e	259c	0.10	4.6	
B_1L_0	27. 6f	23dfg	150d	0.24	4.7	16. 2f	16f	177de	0.11	4.6	
B_1L_1	29. 5f	22fg	136de	0.19	5. 1	19. 1e	20de	191d	0.11	4.9	
B_1L_2	29. 1f	28bc	173c	0.18	5. 7	16. 4f	24bc	261c	0.11	5.4	
B_1L_3	27. 0f	34a	229ab	0.12	7.2	13.0g	· 29a	395b	0.10	6.5	
B_1L_4	_	_		_	_	10. 9 g	30a	500a	0.10	7.9	
B_2L_0	39. 1de	21g	98f	0.44	4. 7	26. 5cd	16f	111gh	0.29	4.6	
B_2L_1	37. 9e	27cde	124e	0.63	5.1	31. 1b	21de	125fg	0. 24	4.9	
B_2L_2	38. 6de	29bc	137de	0.44	5.7	31. 9b	25bc	140ef	0.26	5.4	
B_2L_3	39. 7de	32ab	146de	0.28	7. 2	25. 0d	26b	185d	0.17	6. 5	
B_2L_4	_	-	-	-	_	21. 0e	30a	256c	0.12	7. 9	
B_3L_0	62. 0a	17h	49g	0.773)	4.7	28. 4c	16f	99h	0.55	4.6	
B_3L_1	5 5. 7b	27cde	89f	0.84 ³)	5.1	34. 9a	21de	108gh	0.58	4.9	
B_3L_2	47.5c	29bc	111ef	0.84	5.7	32. 1ab	22cd	126fg	0.48	5.4	
B_3L_3	40.7de	34a	150d	0.51	7.2	31.6b	29a	156e	0.39	6.5	
B_3L_4	_	_	_	_	_	27.7c	29a	189d	0.19	7. 9	

注:1)为 Ca、B 当量之比;2)邓肯法检验 5%显著性差异,下表均同;3)该处理油菜叶片出现硼中毒症状。

将两种红壤施用石灰的 pH 值和该 pH 值下 3 个硼水平的土壤有效硼含量(平均值)作直线回归分析,它们的相关系数分别为红壤 I,r=-0.8863 (n=4),红壤 I,r=-0.9994 (n=5),土壤有效硼与土壤 pH 呈显著的直线负相关,即随 pH 升高,土壤有效硼含量下降。而在不同的 pH 值时,对土壤有效硼和油菜植株硼含量的影响是不同的。当 pH 提高到 5.1 或4.9 (L₁)时,土壤有效硼含量在 6 个处理中有 3 个增加,植株硼含量有 4 个处理增加,说明红壤加少量石灰,对土壤硼的有效性或作物的硼吸收量多有增加的趋势;而当土壤 pH 上升至 5.7 或 5.4(L₂)以上时,上述硼含量均随石灰用量的提高(pH 值的增加)而下降,二种土壤 pH 升高至 6.5 或 7.2(L₃)时的土壤有效硼含量与 L₁ 比较,红壤 I 平均减少 44%,红壤 I 减少 24%。同样植株硼含量也分别减少 13%和 20%。红壤 I 当 pH 上升到 7.9(B₃L₄)时,土壤有效硼从B₃L₁的 0.58 微克/克下降至 0.19 微克/克,已低于 0.25 微克/克严重缺硼的临界含量。如前所述,当土壤 pH 既大于 5.5 又处于高硼的情况下,土壤 pH 与土壤有效硼及植株间则显示负相关关系,反之,变化呈无规律态。也有报道 高表明,当土壤 pH 6.5,这种负相关才存在,红壤施用石灰,土壤 pH 值对上述硼含量的影响要低于此 pH 值。依据以上规律,红壤上施用石灰宜将 pH 调节至 5.5,而不超过 6.5。

(三)红壤中硼的分级形态和施用石灰的关系

表 5 土壤各形态硼的分配率

土壤	CaCl	2-B	甘露	孽—B	NHOX-	B(黑)	NHOX	(紫)	残	硼
	μg/g	%	μg/g	%	μ g /g	%	μg/g	%	μg/g	%
红壤I	0.05	0.17	0.05	0.17	3. 23	10.8	3. 72	12.4	22.8	76. 4
红壤I	0.06	0.07	0.07	0.08	3. 71	4. 27	8. 56	9.85	74.4	85. 8

由表 1 可知,供试土壤有效硼含量很低,2 种土壤分别占全硼的 0.40%和 0.13%。对土壤硼的分级测定表明(表 5),水溶及非专性吸附的硼($CaCl_2-B$)与专性吸附的硼(甘露醇 -B)之和,占红壤 1 全硼为 0.34%,红壤 1 为 0.15%,通常认为,它们是作物可吸收利用的。铁锰氧化物非结晶 $(NH_4OX 黑-B)$ 与结晶 $(NH_4OX 紫-B)$ 物中的硼在二个土壤上分别占 23.2%和 14.1%,硅酸盐物中的硼(残硼)分别占 76.4%和 85.7%,此 3 级硼之和分别占全硼的 99.7%和 99.8%,与我国红壤中酸溶态和酸不溶态硼之和的分配状况相似 (50) 。

供试土壤各形态硼含量及有效硼(HWS-B)与油菜植株中的硼含量的相关系数 r 值列于表 6。表 6表明,只有 $CaCl_2$ -B和甘露醇-B像 HWS-B一样,有极显著的线性相关,而与其

表 6 土壤各形态硼(x)与油菜植株硼(y) 含量间的相关系数 r 值

形 态	红 壤 l (n=13)	红 壤 I (n=16)
CaCl ₂ -B	0.8827**	0.7974**1)
甘露醇-B	0.7541**	0.7822**1)
NH₄OX(黑)-B	0.2873	0. 1282
NH₄OX(紫)−B	0. 2548	0.0187
残一棚	0. 2172	0. 2338
HWS-B	0.8921**	0.8960**1)

注:1) 相关方程为 y=a+blogx,其余均为 y=a+bx

他形态的硼相关不大,证实前者为作物可吸收利用,而后者对作物是无效的⁽¹⁾。

表 7 资料显示了土壤 pH 对 CaCl₂-B 及甘露醇-B 的影响,它们相互呈负相关,其中红壤 II 相关达显著和极显著水准。特别是当石灰用量增至 2.4 克/千克时,上述硼含量下降幅度更大。红壤施用石灰后,红壤中大量的铝离子和羟基铝被钙离子所代换,并形成氢氧化铝沉淀,它们能吸附固定土壤中的可溶硼⁶³。

表 7 土壤 pH 对两种形态硼含量的影响¹⁾

		红壤工		红 壤 『			
石灰用量代号	pН	CaCl ₂ -B (μg/g)	甘露醇-B (μg/g)	pН	CaCl ₂ -B (μg/g)	甘露醇-B (μg/g)	
Lo	4. 7	0. 21	0. 24	4.6	0.14	0. 29	
L_1	5.1	0. 22	0. 32	4.9	0.13	0.19	
L_2	5.7	0. 23	0.30	5.4	0.12	0.14	
L ₃	7.2	0.16	0.15	6.5	0.09	0.13	
L ₄				7.9	0.07	0.11	
pH 与硼含量的 相关系数 r 值		-0.7968	-0.7239		-0.9856**	-0.8167*	

注: 1) 等量石灰下 B₁,B₂,B₃ 处理含量平均值。

(四)石灰对油菜钙硼平衡的影响

酸性土壤施用石灰后的缺硼现象,不仅因土壤 pH 的提高降低了土壤有效硼含量,而且因作物体内钙离子的增加而影响了钙与硼的平衡,钙硼平衡常用 Ca/B 值(当量之比,下同)表示,作物不同,Ca/B 值不同⁶⁵。 正常油菜叶片的 Ca/B 值尚未见报道,我们的研究结果表明⁶²,在田间试验的条件下,油菜叶片 Ca/B 值在 100 左右,与甜菜叶片相似。如前所述,两种土壤的 B_0L_0 处理的 Ca/B 值分别为 246 和 259,这显然与缺硼有关。在同一硼水平下,随石灰用量的增加因植株钙含量增加而使 Ca/B 值升高,最高的为红壤 \mathbb{I} 的 B_1L_4 处理达 500,同一水平石灰用量下,随硼用量的增加因植株硼含量的升高 Ca/B 值降低,最低的为红壤 \mathbb{I} 的 B_3L_0 ,Ca/B 值仅 49(出现硼中毒症状)。

在石灰用量 1.2 克/千克(L_2)条件下,硼用量红壤 I 为 0.5 微克/克(B_2),红壤 I 为 1.0 微

克/克(B₃)时,油菜全株 Ca/B 值,红壤 I 为 137,红壤 I 为 126(表 4),比田间正常的油菜叶片的 Ca/B 值要高,可能是植株部位间的差异所致。严重缺硼或石灰施用过量的红壤,Ca/B 值往往很高,通常通过施硼或加大硼用量来纠正。相反硼中毒的土壤,可通过大量施用石灰加以纠正。在本试验条件下,红壤 I 出现过硼中毒症状,当石灰用量加大至 1.2 克/千克(pH5.7)时,油菜植株钙含量增加 7%,植株硼含量减少 15%,这时 Ca/B 值由 89 上升至 111,硼中毒症状也随之消失。所以在红壤上施用石灰和硼时,应注意钙硼之间的平衡。

(五)施石灰对油菜钼营养的影响

表 8 pH 对土壤水溶钼和油菜植株含钼量的影响

代 号	红壤I			红壤『			
16 5	pН	土壤水溶 Mo	植株 Mo	pН	土壤水溶 Mo	植株 Mo	
Lo	4. 7	0.007	0. 08	4.6	0.009	0.16	
Lı	5.1	0, 007	0. 11	4.9	0.011	0.16	
L ₂	5.7	0.009	0. 18	5.4	0.012	0.15	
\mathbf{L}_3	7.2	0.010	0.68	6.5	0.017	0.26	
L ₄	_		- 1	7.9	0.022	0.59	
5%L.S.D		0	0.079		0.0019	0.086	

表 9 土壌 pH、水溶钼与油菜植株钼含量间 相关性(r 值)

相关因子	红壤 i (n=13)	红壤 I (n=16)
土壤 pH→土壤水溶钼	0.9493**	0.9786**
土壤 pH→植株钼	0.9283**	0.9165**
土壤水溶钼→植株钼	0.8714**	0.9077

盆栽试验中,土壤水溶态钼和植株含钼量均随石灰用量的增加,pH值的提高而增加(表8)。它们之间并有很好的直线正相关(表9)。如表8所示,当二种土壤pH为7.2和6.5时(L_a),土壤水溶钼,油菜植株钼含量,在红壤 I 上分别增加0.43和7.5倍,红壤 I 增加89%和63%,而pH5.5左右时

 (L_2) ,增加幅度很小,红壤 I 植株钼含量甚至未增加,故有人提议,在酸性土壤上施用石灰,pH 小于 6.5 时,仍需补充钼⁽⁶⁾。

三、小结

油菜盆栽试验表明,施入红壤中的硼,当施用石灰使 pH 大于 5.5 时,随石灰用量增加,pH 提高,土壤有效硼和油菜植株硼含量减少。缺硼或石灰用量高的油菜,Ca/B 值高,通过施硼或加大硼用量纠正而获得营养平衡的 Ca/B 值。建议红壤上的石灰用量以使土壤 pH 在5.5—6.5 间为宜,硼的用量,在砂质土上硼砂为 0.7 千克/亩(B 0.5 微克/克),粘质土 1.4 千克/亩(B 1.0微克/克)。若加工成含硼复合肥后集中施用,上述硼用量可减少,红壤施石灰当土壤 pH 低于 6.5 时,土壤中钼的有效性虽提高,但对需钼高的作物供应仍不足。

参考文献

- [1] 中国科学院红壤生态实验站,红壤生态系统研究,第一集,科学出版社,135—140页,1992。
- [2] 徐俊祥、唐永良、徐永福,红壤施用石灰和硼对油菜的增产效应及钙硼平衡,土壤学报,31(1):109-112,1994。
- [3] 中国土壤学会农业化学专业委员会,土壤农业化学常规分析方法,科学出版社,154-162,279-282,297-298, 1983.
- [4] Jin-Yun Jin, D. C. Martens and L. W. Zelazny, Soil. Sci. Soc. AM, J. Vol. 51, 1228-1231, 1987.
- (5) Jouko Sippola and Raimo Ervio, Finn. Chem Lett. 138-140, 1977.
- 〔6〕刘铮,微量元素的农业化学,农业出版社,108-132页,1991。