# 有机物料对水稻土某些物理性质的影响·

塿

# 朱红霞 姚贤良

(中国科学院南京土壤研究所 南京 210008)

#### 摘 要

研究了有机物料对水稻土结构、容重、孔原性、持水性及可塑性等物理性质的影响。结果表明,长期(5—8年) 施用有机物料能明显改善水稻土上述各种性质,改善效果因土而异。主要取决于土壤的水文状况。为了充分发挥有 机物料的改土效果,在地下水埋深较浅的土壤上,在施用有机物料的同时,必须改善土壤的排水能力。

关键词 有机物料: 水稻土; 物理性质

有机物料既是作物所需的多种养分的重要给源,又是改善土壤环境(物理、化学和生物学)的物质基础:有机物料分解过程中的某些中间产物——多糖,能将土壤矿质颗粒聚集为团聚体;不易分解的粗纤维,能疏松土壤;改变某些无机胶结物(如无定形氧化铁、铝、硅)的活度等。因此,不少研究者认为 <sup>(1)</sup>,有机物料在改善土壤环境,特别是物理环境起了重要作用。但对于有机物料在水稻土上的作用问题,看法不一。有人认为在水稻土上施用有机物料只会增加土壤的还原分散,破坏土壤结构<sup>(1)</sup>;有的则认为,它的作用受土壤排水条件所制约 <sup>(2)</sup>,但也有研究者指出,即使土壤处于淹水情况下,有机物料对改善土壤的通气性仍有积极意义 <sup>(3)</sup>。为了进一步论证有机物料的改土作用与水文条件的关系,笔者选择了两组地下水位埋深不同的长期田间试验地进行了比较。一组设于安徽省芜湖市,土壤为潜育性水稻土(重壤质青紫泥),麦季地下水位在 40cm 左右,供试土样系采自试验的第 5 年;另一组设在苏州市望亭太湖地区农科所的水泥池里,土壤为潴育性水稻土(粘质黄泥土),麦季地下水位在 90cm 左右,供试土样系采自试验的第 8 年。

## 1 材料与方法

## 1.1 供试土壤

供试土壤分别为青紫泥(重壤土)和黄泥土(轻粘土)。它们的基本性质列于表 1 和表 2。

| 土壤  | 粒級(粒径: mm) |           |           |            |             |         | 质地     |
|-----|------------|-----------|-----------|------------|-------------|---------|--------|
|     | 1-0.25     | 0.25-0.05 | 0.05-0.01 | 0.01-0.005 | 0.005-0.001 | < 0.001 | 一 庾起   |
| 青葉泥 | 0.97       | 3.18      | 41.3      | 14.6       | 16.9        | 23.0    | 粗粉质重壤土 |
| 黄泥土 | 0.42       | 3.89      | 30.8      | 16.7       | 18.7        | 30.3    | 粗粉质轻粘土 |

表 1 供试土壤的颗粒组成(%)

本表部分數据由徐富安同志提供。

<sup>\*</sup> 本文为所长基金项目的部分内容;江苏太勒地区农科所提供了试验的土样,特此致谢。

<sup>&</sup>lt;sup>①</sup>赵诚斋,水稻土耕作研究,中國科学院南京土壤研究所物理室(資料)。1988。

表 2 供试土壤的农化性质

| 土壤  | 有机质<br>(g/kg) | 全 <b>氮</b><br>(g/kg) | 全磷<br>(g/kg) | 全钾<br>(g/kg) | 水解氨<br>(mg/kg) | 逐效磷<br>(P,mg/kg) | 逐效钾<br>(K,mg/kg) |
|-----|---------------|----------------------|--------------|--------------|----------------|------------------|------------------|
| 青紫泥 | 27.1          | 1.57                 | 0.64         | 14.7         | 128            | 17.5             | 78               |
| 黄泥土 | 24.2          | 1.43                 | -            | _            | <b>–</b>       | 8.4              | 127              |

本表部分数据由徐富安同志提供。

#### 1.2 田间试验

分别设在安徽省芜湖市及江苏省苏州市望亭镇。

## 1.2.1 芜湖试区\*

试验布置在安徽省芜湖地区农科所试验田上。从 1983 年开始,进行稻一稻一麦轮作。 麦季地下水位在 40cm 左右。田间试验设 4 个处理:

(1)对照:单施化肥,用量为:大麦上施硫铵 40kg/亩,过磷酸钙 15kg/亩,氯化钾 10kg/亩;早稻上施硫铵 40kg/亩,过磷酸钙 25kg/亩,氯化钾 10kg/亩;晚稻:硫铵 30kg/亩,氯化钾 10kg/亩;(2)稻属:早稻增施 1500kg/亩猪粪,其余同对照;(3)麦展:麦季增施 1500kg/亩猪粪,其余同对照;(4)稻草:晚稻增施 200kg/亩干稻草,其余同对照。

试验小区面积为 67m2, 每处理重复 3 次。

## 1.2.2 望亭试区

试验设在江苏太湖地区农业科学研究所的水泥池中,供试土壤为黄泥土,麦季地下水位通常在 90cm 左右。从 1980 年秋播开始进行稻麦轮作。试验设 3 个处理:

(I)对照:单施化肥,用量(以每季作物计)为: 5—8kg/亩 N, 4kg/亩  $P_2O_5$ , 5kg/亩  $K_2O$ ; (II) 展肥:除施 N、P、K 化肥外,每季加施 500kg/亩猪粪;其余同对照; (III) 稻草;仅施 N 肥(5—8kg N),每季加施 150kg/亩干稻草。

小区面积为 20m², 每处理重复 3 次。

## 1.3 测定方法

(1)全氯用开氏法; (2)有机质用重铬酸钾氧化法; (3)土壤颗粒组成用吸管法; (4)容重用环刀法; (5)当量孔隙直径用环刀采取原状土,以石英砂一高岭土吸力平板仪测定,按茹林公式(d=3/H,式中:d为当量孔隙直径(mm); H为用水柱高度(cm)表示的水吸力)计算; (6)水稳性团聚体用 H· IV 萨维诺夫法测定; (7)塑限用搓条法; (8)液限用瓦氏锥式法.

#### 2 结果和讨论

## 2.1 有机物料对土壤结构的影响

土壤施用有机物料后,其有机质含量一般都有增加的趋势(表 3)。至于对水稳性团聚体的影响,则视土壤而异。对望亭的黄泥土而言,>0.25mm 的水稳性团聚体含量有所增加,尤以处理①(化肥加猪类)的效果最佳,其平均重量直径的变化趋势也大致相似。而对芜湖的青紫泥来说,有机物料对土壤结构性几乎无影响,土壤间的这种差异可能与各自的水文条件不同有关。前者排水较快,土壤处于好气条件下的时间相对较长,有机物料分解比较完全,且其产物有团聚土粒的作用,致使>0.25mm 水稳性团聚体含量及团聚体平均重量直径增

试验由中科院南京土壤研究所物理室原结构组布量。

加.后者所处的地下水位较高,排水较慢,土壤处于还原条件下的时间较长,有机物料的嫌气分解会使土粒分散,影响有机物料的改土效果。

# 2.2 有机物料对土壤容重的影响

芜湖试区的处理 3(麦季施猪粪), 其土壤容重为 0.98g/cm³, 极显著地低于处理 1(1.09g/cm³); 而处理 2(稻季施猪粪)和处理 4(稻草)对降低土壤容重的效果不显著。望亭黄泥土的处理Ⅱ及Ⅲ的土壤容重分别为 0.96g/cm³及 1.05g/cm³, 都极显著地低于对照(1.20g/cm³), 尤以处理Ⅱ的效果最佳,甚至它与处理Ⅲ之间的差异也达到了显著水平。由于有机物料自身密度远低于土壤

|     | 土壤  | 处理   | 有机质<br>(g/kg) | 稳性团聚体<br>含量(g/kg) | 平均重量直<br>径*(mm) |
|-----|-----|------|---------------|-------------------|-----------------|
| 青紫泥 |     | 1    | 30.0          | 752               | 2.42            |
|     | 2   | 33.8 | 744           | 2.23              |                 |
|     | 3   | 38.8 | 754           | 2.44              |                 |
|     |     | 4    | 33.8          | 749               | 2.21            |
| 黄泥土 | '   | I    | 24.0          | 716               | 2.26            |
|     | 黄泥土 | П    | 30.5          | 792               | 2.83            |
|     | Ш   | 30.3 | 755           | 2.73              |                 |

<sup>•</sup> 平均重量直径(MWD)= $\sum_{i=1} \overline{X}i \cdot Wi$ ,式中 $\overline{X}i$ 为每一粒级的平均直径(mm);

式中X1为每一粒级的平均且径(mm);
Wi 为每一粒级的百分重量。

矿物质,因此,施用有机物料一般能降低土壤容重。但降低的幅度主要取决于有机物料种类、施用量及土壤环境条件。因为有机物料也可通过改善土壤结构性间接地影响土壤容重。尤其是在质地粘重的土壤上,其容重的降低,大多归因于土壤团聚度和孔隙度的增加<sup>(4)</sup>。

### 2.3 有机物料对土壤孔隙性的影响

从图 1 可以看出,两种供试土壤在增施 有机物料后,其总孔隙度和 pF=2 时的充 气空隙度都不同程度地有所增加,其中以望 亭黄泥土增加幅度较大。

当土壤 pF=2 时,芜湖试验区各处理区土壤的充气孔隙度如下:处理 1为 15.0%;处理 2为 15.6%;处理 3为 18.8%;处理 4为 17.3%。经方差分析,各处理间差异不显著。但望亭试区各处理差异较明显,当土壤 pF=2 时,处理 I 及 II 的充气孔隙度分别为 27.9%和 24.9%,都极显著地高于对照(16.5%)。可见,土壤水分状况将影响有机物料改善土壤孔隙特性的效果。

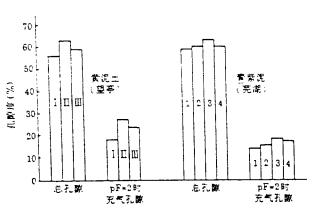



图 1 施用有机物料对土壤孔隙状况的影响

### 2.4 有机物料对土壤持水性的影响

土壤持水性能受两个因素的影响,一是孔隙的数量及其大小分布; 二是土壤的比表面积 <sup>(5)</sup> . 增施有机物料,除其自身的持水容量较土壤矿质部分高,有利改善土壤持水特性外,另一方面它还能增加土壤总孔隙度,改变孔隙的分布状况,从而对土壤的持水特性产生一定的影响。图 2 及图 3 显示了青紫泥及黄泥土在 1—90 kPa 范围内的持水曲线。从图中可以看出,增施有机物料后,在一定吸力下的土壤含水量将有所增加。

## 2.5 有机物料对土壤可塑性的影响

据报道<sup>(6)</sup>,有机质含量高的土壤,塑性上下限都较高,但塑性指数变化不大。表 4 结果表明,施用有机物料后,土壤的液限值提高,而塑限只有望亭试区的处理Ⅱ及Ⅲ有所增

## 加,塑性指数变化无规律性。

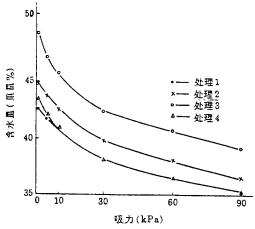



图 2 芜湖试区各处理土壤的水分特征曲线

从以上结果可以看出,高产水稻土长期施用有机物料以后,将引起土壤某些物理性质的变化。在地下水位埋深较深的望亭试区的土壤,施用有机物料能改善土壤的团聚性和孔隙状况,降低土壤容重。而在地下水位埋深较浅的芜湖试区的土壤,有机物料的作用则不明显。所以,为使有机物料的改土效果得到充分的发挥,在地下水位埋深较浅地区,在施用有机物料的同时,必须注意改善排水条件。

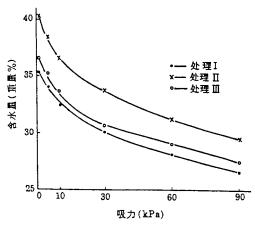



图 3 望亭试区各处理土壤的水分特征曲线

表 4 有机物料对土壤可塑性的影响

| 土壤           | 处 理 | 塑 限<br>(百分含水量) | 液 限<br>(百分含水量) | 塑性<br>指数 |
|--------------|-----|----------------|----------------|----------|
| 青            | 1   | 30.0           | 41.0           | 11.0     |
| 紫            | 2   | 30.8           | 42.0           | 11.2     |
| 狍            | 3   | 30.0           | 43.1           | 13.1     |
| æ            | 4   | 29.6           | 42.3           | 12.7     |
| 黄 I          |     | 25.5           | 41.4           | 15.9     |
| ₹ <b>2</b> Π |     | 27.0           | 43.2           | 16.2     |
| 土 🏻 🎞        |     | 28.3           | 42.6           | 14.3     |

## 参考文献

- [1] R.J. Mackae and G.R. Mehuys, Advances in Soil Science. 1983, 3: 71-94.
- [2] 许绣云、姚贤良, 有机物料对两种水稻土物理性质的影响。土壤, 1988, 20:169-174.
- [3] Eiichi Kohno, Proceedings First International Symposium on Paddy Soil Fertility. 1988, 963-981.
- [4] Hall, J. E. and E.G.Coker, In The influence of sewage sludge application on physical and biological properties of soil (G. Catroux, P.L. Hermite, and E. Suess (eds.) D. Reidel, Dordrecht, Halland, 1983, 43-61.
- [5] P. Khaleel, K.R. Reddy and M. R. Overcash, J. Environ. Qual. 1981, 10:133-141.
- [6] Archer, J. R., In Soil physical condition and crop production (Soil Consistency), Techinical Bulletin M. A. F. F. London. 1975, 20: 289-297.