壤

有机肥对石灰性土壤无机磷组分的影响:

王永和

曹翠玉 史瑞和

(江苏省盐城市农业局 盐城 224002)

(南京农业大学)

摘 要

研究了3种有机肥料对土壤无机磷组分的影响。其中猪粪能显著提高土壤中Ca₂-P、Ca₈-P、Al-P和Fe-P的含量,紫云英及稻草的作用明显低于猪粪。3 种有机肥料对 Ca₁₀-P的影响都很小。

关键词 猪粪;紫云英;稻草;土壤无机磷组分;石灰性土壤

增施有机肥料是改良低产土壤,提高土壤肥力,改善土壤磷状况的重要措施。我们根据 蒋柏藩等提出的土壤无机磷分级体系 (1),研究了有机肥料对石灰性土壤无机磷组分(尤其是 Ca-P 体系)的影响,为石灰性土壤上合理施用有机肥提供科学依据。

1 材料和方法

1.1 供试土壤和肥料

供试土壤为黄泛冲积母质发育的黄潮土系列土壤(沙土和淤土),分别采自江苏省淮阴县新渡乡和渔沟乡。土壤经风干、磨细,分别过 5mm 和 2mm 筛后备用。土壤基本性状见表

表1 供试土壤基本性状

土壤名称	有机质 (g/kg)	全氨 (g/kg)	全磷 (P ₂ O ₅ , g / kg)	速效磷 (P, mg/kg)	速效钾 (K, mg/kg)	pН	CaCO ₃ (g/kg)	CEC (cmol/kg)	粘粒 < 1 µm (g / kg)	备注
沙土(1)	10.87	0.63	1.53	8.40	43.9	8.16	69.1	8.86	109	培养试验(1)
沙土(2)	10.34	0.72	1.29	1.68	57.2	8.18	74.8	8.86	120	培养试验(2)
淤土	17.93	1.22	1.57	16.3	133	8.06	120	22.1	385	盆栽试验

供试有机肥为猪粪(C/N为14.3),紫云英(C/N为14.3)和稻草(C/N为90.5)。它们经风干后磨细,过20目筛备用。其基本组成见表2。

表 2 供试有机肥的基本组成 (以风干重为基准, g/kg)

有机肥	全碳(C)	全氯(N)	全磷(P ₂ O ₅)	全钾(K)	
猪粪	368	25.7	17.42	7.6	
紫云英	412	28.7	4.74	14.4	
稻草	471	5.2	0.51	16.4	

1.2 试验设计

1.2.1 室内培养试验, 分两组进行:

(1)有机肥料用量对土壤无机磷组分影响试验(培养试验 1) 供试土壤为新渡乡沙土(1),有机肥用量为土壤用量的 0、0.5%、1.0%、2.5%、5.0%和 7.5%。土、肥混匀后装入

^{*} 国家自然科学基金资助项目。

100ml 烧杯中,调节水分至 20%(w/w),重复 3 次,于 25°±1℃恒温恒湿培养 120 天后测定。

(2)有机肥料种类对土壤无机磷组分影响试验(培养试验 2) 供试土壤为新渡乡沙土(2) 和渔沟乡淤土,供试有机肥料与培养试验 1 同、试验处理为 1,对照; 2,稻草; 3,猪粪; 4,紫云英; 5,普钙(SP)。两种土壤处理相同、肥料用量: 有机肥为 2.50g/100g 土,普钙按 37.5mg $P_2O_5/100g$ 土量加入过磷酸钙(含 P_2O_5 11.49%)。土、肥充分混匀后,装入 200ml 塑料瓶中,加水调节至田间持水量的 70%,恒温(25°±1℃)恒湿培养,分别于培养后第 3、30、60、和 120 天取样,供测定.

1.2.2 盆栽试验

供试土壤、肥料及试验处理同培养试验 2. 每盆装土 3kg, 加有机肥 10.0g/kg 土(施磷处理的加 0.15g P_2O_5/kg 土的过磷酸钙),每盆施入适量氮、钾和微量元素作底肥,试验重复 3 次,供试作物为黑麦草,1989年 10 月 27 日播种,1990年 3 月 8 日和 4 月 18 日两次收获.

1.3 测定方法

土壤无机磷分级按蒋柏藩等提出的方法测定 $^{(2)}$,即用 pH7.5 0.25mol/L NaHCO₃ 溶液提取 Ca₂-P; pH4.2 0.5mol/L NH₄Ac 溶液提取 Ca₈-P; pH8.2 0.5mol/L NH₄F 溶液提取 Al-P; 0.1 mol/L NaOH-0.1 mol/L Na₂CO₃ 溶液提取 Fe-P; 0.3mol/L Na₃Cit-Na₂S₂O₄-NaOH 溶液提取 O-P; 0.5mol/L H₂SO₄ 提取 Ca₁₀-P。各提取液中的含磷量用钼兰比色法测定。

2 结果和讨论

2.1 供试土壤的无机磷组分

石灰性土壤中无机磷组分以 Ca-P 为主。在 Ca-P 中按其活性不同可分为 Ca_2-P 型、 Ca_8-P 型、和 $C_{10}-P$ 型。3 个供试土壤的无机磷组分状况相差很大。新渡乡沙土 $Ca_{10}-P$ 分别占无机磷总量的 68.5%(沙土 1)和 78.3%(沙土 2),而渔沟乡淤土 $Ca_{10}-P$ 只占 44.0%,Al-P、Fe-P 与 O-P 均显著高于新渡乡沙土。石灰性土壤磷酸钙盐主要集中于土壤砂粒部分,原生矿物磷灰石 85-95%集中于砂粒中 (3) 。沙土中的砂粒、粉砂粒含量高,因此 Ca-P 含量也高。而 Al-P、Fe-P 和 O-P 则主要集中于土壤粘粒中。另外, Ca_2-P 、 Ca_8-P 和 Al-P 含量新渡乡沙土(1)明显高于沙土(2),这是因为前者多年施用过磷酸钙的结果。

2.2 有机肥料对土壤无机磷组分的影响

施用不同有机肥料,对土壤无机磷组分有不同的影响(表 3)。施用猪粪、紫云英能显著提高土壤中 Ca_2 —P 和 Ca_8 —P 的含量,尤以猪粪的作用更为显著。稻草由于含磷量低,纤维素含量高,分解较慢。在好气条件下,短期内对土壤无机磷组分的影响很小。以 5.0%的用量为例,施用猪粪、紫云英和稻草处理, Ca_2 —P 分别为 211、32.3 和 8.01P mg/kg 土;而 Ca_8 —P 则分别为 343、63.3 和 54.9P mg/kg 土。一般认为 Ca_2 —P 的活性较高,对作物的有效性大,是石灰性土壤中作物吸收的主要磷源; Ca_8 —P 是石灰性土壤中亚稳态磷,它与 Ca_2 —P 之间呈动态平衡。猪粪施入土壤后,其中磷主要转化为 Ca_2 —P 和 Ca_8 —P,说明猪粪是一种优质的有机肥料。施用猪粪和紫云英还能明显提高土壤中 Al—P、Fe—P 含量。

相关分析表明,猪粪和紫云英用量与土壤中 Ca2-P、Ca8-P、Al-P 和 Fe-P 等含量均

有很好的相关性,其中猪类用量与土壤中 Ca2-P、Ca8-P 含量的相关系数最高。

表 3 有机肥料用量对土壤无机磷组分的影响

处理	有机肥 用量%		土	壞无机磷组分	(P, mg / kg	t)	
		Ca ₂ -P	Ca ₁ -P	Al-P	Fe-P	O-P	Ca ₁₀ P
对照 (沙土 1)	0	8.18	57.4	24.1	27.6	76.5	421
· · · · · · · · · · · · · · · · · · ·	0.5	7.19	50.6	24.0	32.8	52.4	418
沙土 1	1.0	10.8	53.7	19.9	22.8	62.4	424
+	2.5	8.41	54.9	22.3	22.1	65.6	403
稻草	5.0	8.01	54.9	19.9	20.5	45.1	420
	7.5	16.8	60.2	24.4	20.7	61.1	427
	0.5	10.2	55.8	25.1	34.7	80.0	424
沙土 1	1.0	12.8	54.7	27.4	30.0	71.8	430
+	2.5	20.4	55.5	27.3	36.5	69.9	430
紫云英	5.0	32.3	63.3	34.7	45.1	88.6	425
	7.5	59.0	81.9	40.3	57.2	99.1	408
	0.5	43.4	77.7	28.7	37.1	81.0	434
沙土1	1.0	62.4	89.3	34.1	42.1	66.5	404
+	2.5	137	162	55.3	48.3	106	419
猪粪	5.0	211	343	66.6	56.9	107	429
	7.5	323	442	115	88.0	136	406

2.3 有机肥对黑麦草吸磷量及生物量的影响

表 4 有机肥对黑麦草吸磷量及干物重的影响 (盆栽试验, 1989—1990)

土壤	肥料 处理	吸磷量 (P,mg/盆)			干物重 (g/盆)		
		第一季	第二季	二季总量	第一季	第二季	二季总量
	土壤	0.42	0.20	0.62	0.51	0.42	0.93
ð	+稻草	0.05	0.05	0.10	0.23	0.10	0.33
±	+紫云英	3.28	4.38	7.66	3.12	4.98	8.10
(1)	+猪粪	27.2	21.3	48.5	13.6	16.1	29.7
	+普钙	27.9	23.7	51.6	13.8	15.7	29.5
	土壤	5.19	11.6	16.8	3.44	11.5	14.9
淤	+稻草	4.20	12.6	16.8	2.76	10.7	13.5
	+紫云英	17.5	25.7	43.2	10.9	15.6	26.5
±	+猪粪	39.5	35.5	75.0	15.1	17.7	32.8
	+普钙	35.9	37.6	73.5	14.4	17.3	31.7

生物试验结果表明(表 4),不同有机肥对黑麦草吸磷量及生长的影响有明显的差异,在沙土(1)以及淤土上施用猪粪,能使黑麦草的吸磷量及干物重与施用磷肥(普钙)的效果相近,说明猪粪是一种优质有机肥,用量高时可以起到过磷酸钙的供磷作用.

参考文献

- [1] 蒋柏藩、顾益初、石灰性土壤无机磷分级体系的研究、中国农业科学、1989, 22(3): 58-66.
- [2] 顾益初、蒋柏藩、石灰性土壤无机磷的测定方法、土壤、1990, 22(6): 101-102.
- [3] 顾益初、蒋柏藩、鲁如坤,风化对土壤粒级中磷素形态转化及有效性的影响,土壤学报,1984, 21(2): 134-143。