新疆米泉的灌淤亚类水耕人为土

邹德生

廖宝玲 杜 力

(新疆土地管理局 乌鲁木齐 830000)

(中国科学院新疆生物土壤沙漠研究所)

摘 要

新疆米泉地区起源于原灰漠土或灌耕土的水稻土,成土过程中水耕熟化和灌淤、淋溶与淀积并行。形成独特的灌淤-水耕表层(耕作层+犁底层)和灌淤-水耕氧化还原层。总厚度 > 50cm。基于研究。将供试土壤划分为铁聚水耕人为土和铁渗水耕人为土两个土类。并建议在水耕人为土系统分类中增设灌淤亚类。

关键词 灌淤亚类;参育层

新疆河灌区植稻土壤向水耕人为土的演化中,普遍伴随有程度不同的灌溉淤积过程.新疆第二次土壤普查曾在渗育水稻土下列出灌淤水稻土(土属)这个类型。本文进一步探讨了灌淤水稻土的特征,并就系统分类归属问题提出建议。

1 形成条件

米泉的灌淤水稻土主要分布在洪-冲积扇下部长山子、三道坝等乡. 地下水均在 3m 以下,洪-冲积性黄土母质质地偏轻,多砂壤和粉砂壤土. 稻田引用乌鲁木齐河水灌溉,水中悬移物质相对比较多,比降一般在 10 左右,最高值一号冰川融水可达 65 ⁽¹⁾;灌水量16500 立方/公顷以上. 据米泉气象资料,年平均气温 7℃,>5℃积温 3745℃,极端最高气温 42℃,极端最低气温-32.9℃;最大冻土深度 160cm 左右;年降水量 212mm,年蒸发量 2230mm。

米泉地区种稻历史悠久,公元 1772 年就有商贾承种稻田。种稻多用牛、羊厩肥,据《米泉县农业区划报告》,80 年代该县有 15%耕地是不施基肥的'卫生田',而稻田则年年施用量多质好的有机肥(大粪、油渣、皮渣等),而且精耕细作,机械化程度高。1966 年水稻单产达 5400kg/ha,目前单产更高,普遍在 8000kg/ha 以上。

2 土壌性态

本文研究了两个代表剖面, 米-1 发育于原"灌耕土", 植稻 40 余年; 米-2 发育于原"灰 漠土", 种稻约 100 年以上, 均采自长山子乡洪-冲积扇下部, 相距约 2 公里, 地下水均在 3m 以下, 可比性强.

2.1 剖面形态

土壤在淹水季节水分下行,在回旱的短期内因蒸发而上行,但其强度远小于重力水作

^{*}本文承龚子同、高以信、樊自立、张累德先生指正,曹升庆先生作了全面修改和补充;文中表3、图1中数据由南京土壤所过兴度、杨德涌测定;在此一并致谢!

用. 米泉地区冬季长, 冻土作用约5个月, 加上土壤质地粘重, 有机质含量高, 保水性能良好, 次年播种填闲绿肥也不需灌溉. 剖面形态分化可直观判别为: 耕作层、犁底层、渗育层 (暗灰色斑纹层或浅灰色斑纹层) 和已成为潴育层的母土层. 剖面底部无潜育特征.

水耕表层(耕作层与犁底层)厚 22cm 以上,质地粘重,结构致密,多大块状,原水耕表层中的灰黑色表潜斑块随淤灌作用的持续进行而被埋藏。犁底层一般较稳定,但也有因机械深耕而被破坏。

灌淤-水耕氧化还原层上部的渗育层是灌淤水稻土特有的发生层,有少量锈斑,结构面和孔隙壁有明显的灰色胶膜。可因人为培肥程度,水耕年限和强度而分化为暗灰色渗育层和浅灰色渗育层。米-2 土壤的暗灰色渗育层深达 69cm,其中 23-47cm 为埋藏水耕表层。米-1 土壤的暗灰色渗育层位于 22-29cm, 29-73cm 为浅灰色渗育层。

从渗育层下界至 100cm 的母土层已成为明显的氧化还原斑纹层。

2.2 理化性质

2.2.1 颗粒组成: 剖面上部具有灌淤层机械组成的特征,上下基本一致,由于施肥堆垫物比较复杂,有时会出现粗砂和细砾石,但 0.05—0.002mm 粒级在上下各亚层均比较一致。由于水耕作用, < 0.002mm 粘粒有淋移现象 (表 1),如米-1 土壤粘粒在 22—29cm 处淀积,米-2 土壤粘粒迁移相对深些,在 30-47cm 处淀积。粘粒淀积后形成灰色胶膜。

		各级颗粒含量 (g/kg)								
剖面号	深度(cm)	2-1	1-0.5	0.5-0.25	0.25-0.1 (mm)	0.1-0.05	0.05-0.002	< 0.002		
	0-14	0	0	0	6.28	78.5	600.7	304.6		
	14-22	0	0	0	4.01	83.3	652.0	260.7		
米-1	22-29	0	0	0	4.15	79.3	629.3	287.2		
	29-48	0	0	0	4.67	90.4	646.7	258.2		
	48-73	0	0	0	1.84	78.2	658.4	261.6		
	73-100	0	0	0	0.76	67.7	629.8	301.8		
	0-15	1.89	0.73	2.66	8.53	43.3	432.3	510.6		
	15-23	0	0	0	7.07	26.5	484.3	482.1		
米-2	23-30	0	0	0	5.24	19.4	509.1	466.2		
	30-47	0	0	0	6.97	29.8	420.8	542.5		
	47-69	0	0	0.88	18.98	144.9	525.5	309.9		
	69-100	0	0	0	3.28	91.2	719.1	186.4		

表 1 灌 淤 水 稻 土 机 械 组 成

2.2.2 有机质与腐殖质组成特征

米泉灌淤水稻土水耕表层的有机质高达 27-40g/kg, C/N 比>10; 灌淤-水耕渗育层中的暗灰色斑纹层有机质>20g/kg, C/N 比>10, 而浅灰色斑纹层有机质为 12g/kg 左右, C/N 比<10; 母土层有机质含量<10g/kg, C/N 比<10 (表 2).

米泉灌淤水稻土两剖面的腐殖质组成特征比较特殊, HA/FA 比>1.1,下层高于上层,尤以米-2 土壤 23-30cm, HA/FA 比高达 2.4,这可能与土壤粘重、犁底层及下层土壤含水量高有关。灌淤水稻土 HA/FA>1.1,表明其熟化度水平较高。表层有机碳腐殖化度为 18%,向下呈减弱趋势。

表2 新疆米泉灌淤水稻土化学性质

剖面号	深度 (cm)	全氮	全磷 (P ₂ O ₅)	有机质	有机碳	C / N	CaCO,	胡敏素 C	胡椒酸 C	富啡酸 C	朝/富	有效磷	pH
			(g	/ kg)				(g /	'kg)		(mg/kg)	(1: 2.5)	
	8-14	1.53	3.33	28.79	16.70	11.0	123.8	13.67	1.58	1.45	1.1	48.5	8.0
	14-22	1.62	3.39	27.60	16.08	9.9	124.8	13.19	1.58	1.32	1.2	51.2	8.3
米泉−l	22-29	1.18	2.97	20.94	12.15	11.0	126.9	10.18	1.34	0.71	1.9	25.4	8.5
	29-48	0.84	3.31	12.57	7.29	8.7	123.8					20.9	8.6
	48-73	0.92	2.92	12.80	7.42	8.0	116.4					15.5	8.7
	73-100	0.56	1.81	5.78	3.35	6.0	143.9					14.5	8.8
	8-15	1.95	1.18	39.24	22.76	11.7	164.7	18.62	2.60	1.46	1.8		8.2
	15-23	1.72	1.72	31.76	18.42	10.7	159.2	15.52	2.02	0.88	2.3		8.6
米泉-2	23-38	1.24	1.64	21.56	12.51	10.1	124.2	10.85	1.18	0.48	2.4		8.6
	38-47	1.00	1.54	19.09	11.08	11.7	115.3						8.7
	47-69	0.64	1.37	11.41	6.62	10.4	145.4						8.7
	69-100	0.45	1.36	7.31	4.24	9.5	134.2						8.5

2.2.3 粘粒的化学组成及粘土矿物

由粘粒全量组成与 SiO_2/Fe_2O_3 和 SiO_2/Al_2O_3 的变化可见 Fe_2O_3 和 Al_2O_3 在 47-100cm 处有淀积的特征 (表 3).

表3 新疆米泉灌淤水稻土(米-2)粘粒全量组成

深度	烧失量	SiO ₂	Fe ₂ O ₃	Al_2O_3	CaO	MgO	TiO ₂	MnO	K ₂ O	Na ₂ O	P ₂ O ₅	量总	SiO ₂	SiO ₂	SiO ₂
(cm) (g	(g / kg)	(g / kg)								(g / kg)	Al ₂ O ₃	Fe ₂ O ₃	R ₂ O ₃		
0-15	7.84	587.6	64.1	166.0		42.5	6.3	0.6	31.1	21.5	0.86	998.9	6.01	24.36	4.76
15-23	7.29	588.9	69.0	165.9	_	41.0	6.4	0.6	32.3	22.1	0.73	999.8	6.02	22.68	4.70
23-30	6.44	600.7	65.4	165.6	_	40.4	6.2	0.6	35.3	23.4	0.75	1003	6.15	24.41	4.86
30-47	6.04	603.0	70.9	164.1	_	37.8	6.7	0.7	34.4	23.3	0.84	1002	6.23	22.60	4.83
47-69	7.27	561.4	79.9	173.7	-	40.3	7.3	0.7	38.8	22.6	1.50	998.9	5.48	18.67	4.19
69-100	7.03	549.4	92.4	182.8	_	37.4	8.3	0.7	32.3	20.0	1.68	995.2	5.10	15.80	3.81

[•] 未检出

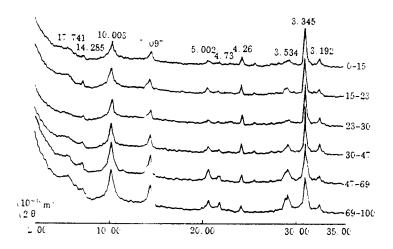


图 1 灌淤水稻土(米-2)粘粒 X 射线衍射谱

从米-2 号剖面各层粘粒(<0.002mm)X 射线分析(图 1),粘土矿物以水云母为主,伴有少量高岭石、绿泥石、蒙皂石、石英、长石等,全剖面几乎无差异。

2.2.4 游离铁, 无定形铁, 晶质铁

灌淤水稻土全铁的剖面分布虽有自上而下增加的趋势,但也只在百年水稻土 (米-2)中有此显示,一般变化不大。游离铁,无定形铁,晶质铁对表征不同类型水稻土有诊断意义 (2),在同一类型水稻土中,由于种稻年限长短,起源土壤不同,也表现有规律性变化。米-1号剖面是 40 多年前的早改水,米-2 则有百年种稻史,两剖面均为灌淤水稻土,却在游离铁,无定形铁,晶质铁的含量及剖面特征方面有其异同处。

(1)水耕表层游离铁,晶质铁最低,而无定形铁最高;游离铁、晶质铁随剖面自上而下 呈渐增趋势,无定形铁则呈递减的规律,Kh值,Fh值均呈上窄下宽的特征,至剖面底部 均未产生逆转现象(表 4),这些都表明,灌淤水稻土渗育层的发育程度。

(2)随种稻年限的增加、游离铁有下降的趋势,米-1号剖面水耕表层游离铁的加权特征数为 3.62g/kg; 22-73cm 受水耕影响、游离铁为 5.24g/kg; 母土层为 6.7g/kg. 米-2号 剖面,水耕表层游离铁的加权数与米-1号基本接近,为 3.49g/kg; 23-47cm 则偏低,为 3.38g/kg; 母土层游离铁为 6.08g/kg, 均较米-1为低。

米-1号型底层的游离铁低于耕作层;米-2号型底层至心土的游离铁均低于耕作层,Fh值<1.耕层略高与其有机质含量较高和淹水耕作条件有关。

रंगका व	ast me	全铁	游离铁	活性铁	晶质铁	游离度	活化度	晶胶率	7/1 At	- A-	活化度
剖面号	深度		(g /	'kg)			(%)		Kh 值	Fh值	层段 系数
	0-14	40.86	3.74	3.40	0.34	9.15	90.91	0.10	1	1	1
	14-22	40.12	3.42	3.13	0.27	8.52	91.52	0.09	0.9	0.93	1.01
米-1	22-29	39.63	4.92	2.18	2.74	12.41	44.31	1.26	12.16	1.36	0.49
	29-48	40.12	5.18	1.13	4.05	12.91	21.81	3.58	35.80	1.41	0.24
	48-73	40.69	5.38	0.87	4.51	13.22	16.17	5.18	51.8	1.44	0.18
	73-100	42.54	6.79	0.98	5.18	15.96	14.43	5.91	59.1	1.74	0.16
	0-15	45.33	3.60	3.39	0.21	7.94	94.17	0.06	1	1	1
	15-23	46.52	3.28	2.72	0.56	7.05	82.93	0.21	3.50	0.89	0.88
米2	23-30	48.54	3.56	2.29	1.27	7.33	64.33	0.55	9.17	0.92	0.68
	30-47	49.32	3.30	2.12	1.18	6.69	64.24	0.56	9.33	0.84	0.68
	47-69	42.40	5.91	1.51	4.40	13.94	25.55	2.91	48.50	1.76	0.27
	69-100	35.40	6.08	1.13	4.95	17.18	18.59	4.38	73.00	2 16	0.20

表4 水稻土铁氧化物分析

注: 游离度为游离铁占全铁的百分含量; 活化度为无定形铁占游离铁的百分含量; 晶胶率为晶质铁占无定形铁的百分含量, Fh 值为层段游离度与表层的比值; Kh 值为层段晶胶率与表层的比值, 活化度层段系数为层段活化度与表层的比值。

(3)灌淤水稻土水耕作用引起的铁的活化过程强烈,水耕表层铁氧化物的活化度高达90%以上,向下呈明显的梯级下降特征,灌淤-水耕渗育层各亚层与耕作层的铁活化度层段比值<0.7,母土层则<0.5。此外,从两剖面的无定形铁及活化度来看,种稻年限长的米-2剖面要偏高一些,由此表明铁的活化过程随水耕时间的延长而有所加强。

(4)晶质铁及晶胶率也随水耕年限的加长而呈下降的趋势: 米-2 剖面 23-47cm 晶质铁加权平均数为 1.21g/kg, 晶胶率加权数为 0.56; 而米-1 剖面的同等深度 23-48cm 晶质铁加

权数为 3.70g/kg, 晶胶率加权数为 2.9. 此外, 米-2 母土层 69-100cm Kh 值为 73, 米-1 母土层 73-100cm Kh 值为 59.1. 以上数据既表明两个剖面都是发育程度较好的水稻土, 又反应出米-2 剖面土壤的发育程度要比米-1 土壤更好, 这与两剖面水耕年限的长短条件是吻合的。

(5)米-1 剖面耕层游离铁为 3.74g/kg, 水耕氧化还原层 (22-100cm) 游离铁加权平均值为 5.78g/kg, 后者与前者之比为 1.54; 米-2 剖面耕层游离铁为 3.69g/kg, 水耕氧化还原层 (23-100cm) 游离铁加权平均值为 5.19g/kg, 后者与前者之比为 1.44。因此米-1 土壤属铁聚型, 而米-2 土壤则属铁渗型 (3)。

3 结 语

- (1)新疆河灌区水稻土普遍伴随有灌淤过程,具有形成灌淤水稻土的条件。
- (2)灌淤水稻土的诊断层是灌淤-水耕表层和灌淤-水耕氧化还原层,供试剖面的水耕氧化还原层,除底部的原母土层具有明显的斑纹外,其上部相当于发生层中的渗育层。
- (3)按《中国土壤系统分类(修订方案)》,新疆米泉的水稻土属人为土纲,水耕人为土亚纲,米-1土壤为铁聚水耕人为土土类,而米-2土壤则为铁渗水耕人为土土类。至于亚类的归属,建议增设灌淤亚类,即分别称为灌淤铁聚水耕人为土和灌淤铁渗水耕人为土。

参考 文献

- [1] 王建军主编,乌鲁木齐国土资源、新疆人民出版社、1993、
- [2] 张甘霖、龚子同,不同起源植稻土壤的特性及分类。中国土壤系统分类探讨、科学出版社。1992。
- [3] 中国科学院南京土壤所主持,中国土壤系统分类(修订方案),中国农业科技出版社,1995。

(上祛第 257 页)

- [4] 中国科学院南京土壤研究所主编,中国土壤 (第二版)、科学出版社, 1990, 602页。
- [5] 曹升康、金光、土壤和非固结物质薄片的系统制备方法、土壤专报1989,43号。
- [6] 中国科学院南京土壤研究所、土壤理化分析、上海科技出版社, 1978.
- [7] Ponnamperuma, F.N., Chemistry of submerged soils, Advances of Agronomy, 1972, 24: 29-96.
- [8] Meek, B.D., et al., Effect of organic matter, flooding time and temperature on the dissolution of iron and manganese from soil in situ, Soil Sci. Soc. Am. Proc., 1968, 32: 634-638.
- [9] Hillel, D., Introduction to Soil Physics, Academic Press, 1980, 90-106.
- [10] Pere'lman, A.I., Geochemistry of Epigenesis, Kohanowski, N.N. (translation), New York, Plenum Press, 1967, PP. 266.