土壤中硝酸根和亚硝酸根的离子色谱法测定

梁 汉 文

周志红

(国家地质实验测试中心 北京 100037)

(辽宁地勘局第七实验室)

摘 要 本文用离子色谱法直接测定土壤浸出液中的 NO_2^- ,为避免土壤中氯离子对测定 NO_2^- 的干扰,采用载银树脂直接加人试液中除氯。 在选定条件下含氯量 $50\mu g/ml$ 的标准试液经除氯处理,氯残留量 $<2\mu g/ml$ 。 用 $2\mu g/mlNO_2^-$ 和 $0.5\mu g/mlNO_2^-$ 进行标准回收试验,回收率分别为 100%-105%,88% - 98%。

关键词 土壤;亚硝酸根;离子色谱

硝酸根和亚硝酸根是土壤农化分析常规测定项目,土壤中这两者的含量是反映土壤性质的重要指标。测定土壤中的硝酸根和亚硝酸根一般都选用容量法(其原理是先将硝酸根和亚

硝酸根还原成 NO₄⁺ 并蒸馏,最后滴定吸收液求得两者合量)。也有文献报道^[1] 用离子色谱法测定土壤浸出液中的硝酸根和亚硝酸根,其优点是可直接连续地进行测定,但由于土壤中亚硝酸根含量低,其色谱峰又紧靠氯峰(两者保留时间相差约 30 秒),当试液中氯量大于5µg/ml 时就有可能对测定 NO₂⁻ 产生影响(见图1)。大部份土壤氯的含量远远大于 NO₂⁻ 含量,使离子色谱法在实际应用中受到限制。

本文根据载银树脂柱可用于除氯的原理⁽²⁾将载银树脂加入试液中除氯,然后用离子色谱法测定亚硝酸根等阴离子。试验表明,含氯量高达 50µg/ml 的试液经处理后仍可有效地测定其中的亚硝酸根,大大提高了离子色谱法测定亚硝酸的抗干扰能力,扩大了其应用范围。

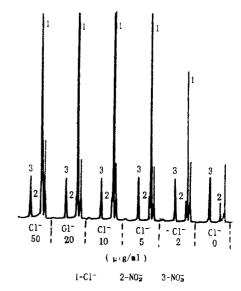


图 1 Cl对 NO₂ 的干扰

1 试验条件及方法

(1) 仪器及主要工作条件

仪器:FIC-2S型离子色谱仪(北京市理化分析测试中心)及电导检测器;分离柱: YSA6 5004-A2;抑制器:全氟碳酸中空纤维管; XWT-S型台式记录仪。

色谱条件: 淋洗液流速 1.7ml/min; 再生液流速 4.5ml/min; 记录仪量程 100mV(扩展)

(2) 主要试剂及标准溶液配制

标准溶液:优级纯氯化纳、亚硝酸钠、硝酸钾经烘干(亚硝酸钠在干燥器中干燥 24 小时以上)冷却后称量,配制成含 Cl^- , NO_3^- , NO_2^- 离子 1mg/ml 溶液,并逐级稀释成所需浓度的工作溶液。

淋洗液:3.5mmol/L Na₂CO₃,4.0mmol/L NaHCO₃(过滤并脱气后使用)。

再生液:25mmol/L H₂SO₄

载银树脂: 732 型阳离子交换树脂(80 至 100 目) 先用水浸泡, 再用 1+1 HNO₃ 浸泡, 然后用去离子水洗至中性, 加入 10% AgNO₃ 溶液(1g 风干树脂约需 5 ml10% AgNO₃), 适当搅拌, 用去离子水倾泻法洗涤后过滤,继续用去离子水洗 20 次以上, 使流出液在离子色谱仪上检查空白值合格($NO_3^-<0.5\mu g/ml$), 风干备用。

(3) 试验方法

在 10ml 比色管中分别加入 $\text{Cl}^-25\mu\text{g}$, $\text{NO}_2^-5\mu\text{g}$, $\text{NO}_3^-20\mu\text{g}$ 用水稀释至 10ml, 加人 0.1g 载银树脂, 在振荡器上振荡 15 分钟, 取下(必要时进行离心), 按给定的色谱条件进行测定。作氯的干扰试验时不经载银树脂处理。

2 结果与讨论

(1) 除氯条件的选择

以往采用银树脂柱分离氯操作繁冗⁽²⁾,为简化手续,本文试验了将载银树脂直接加入试液(含 $Cl^-50\mu g/ml$)中除氯,试验表明,加入载银树脂后试液 经放置 24 小时或采用振荡的方式均可除去氯的干扰,为省时,选择了振荡的方式,并作了确定振荡时间及树脂用量的预试验。

振荡时间:按试验方法试液加入载银树脂后在振荡器上分别振荡 10、20、30、40、60 分钟后进行色谱测定,结果表明振荡 10 分钟的试液氯残留量为 3.4 μg/ml, 我们选择了 15 分钟。

载银树脂用量:按试验方法加入不同树脂量(20mg-1g)进行试验,结果表明加入树脂量>0.1g 时试液中氯残留量 $<1.79\mu g/ml$,选定加入量为0.1g。

(2) 标准回收

以 10 份含 Cl⁻50、NO₂⁻2、NO₂⁻ $0.5\mu g/ml$ 的标准溶液按试验方法进行测定, 回收率分别为 NO₃⁻100-105%; NO₂⁻88%-98%。

3 土壤试样分析

各称取 5.00g 试样置于 125ml 具塞三角瓶中,加水 25ml,在振荡器上振荡 1 小时,取下,经抽滤后取 10.0ml 滤液于 10.0ml 比色管中,加入 0.1g 载银树脂按试验方法测定NO $_3$, NO $_4$ (NO $_3$) 含量高时可直接吸取滤液稀释后测定),结果见表 1。本法结果与光度法结果基本相符。

表 1 土壤试样分析结果* (μg/g)				
试样编号 -	NO ₃		NO ₂	
	光度法	本 法	光度法	本 法
1	35.5	37.4	0.38	0.41
2	58.4	56.3	0.25	0.27
3	449	466	0.29	0.27
4	121	126	0.86	0.82
5	156	158	0.17	0.09
6	46.4	44.5	0.52	0.44

* 土样采自沈阳近郊地表以下 30cm 处。

参考文献

- 1 K F Nieto, W T Frankenberger Jr, Soil Sci. Soc. Am. J., 1985, 49(3):587
- 2 梁汉文, 陈德勋, 银一树脂柱分离氯一离子色谱法测定卤水中氟、硝酸根和硫酸根, 岩矿测试, 1989, 8(1): 1