土壤中氧化钛矿物的鉴定

章明奎 何振立 (浙江农业大学土化系 杭州 310029)

摘 要 研究表明,用 HF 处理粘粒可很好地浓集氧化钛矿物,适于作为粘粒中氧化钛矿物鉴定的预处理。我国南方地区土壤中的氧化钛以锐钛矿为主,金红石和钛铁矿仅少量或微量出现。

关键词 氧化钛: 鉴定: 浓集: HF 处理

土壤中可能存在的氧化钛有金红石(晶质 TiO_2)、锐钛矿(晶质 TiO_2)、板钛矿(晶质 TiO_2)、白钛矿(无定形 TiO_2)。和钛铁矿(Fe TiO_3),其中常见的有金红石、锐钛矿和钛铁矿^[1]。一般认为金红石和钛铁矿为母质固有,属原生;而锐钛矿为成土过程的产物,属次生。土壤中氧化钛矿物的活性较小,因此氧化钛矿物常被作为指示矿物来说明土壤的风化和发育程度。但由于土壤氧化钛含量较低(大多在 $2\sim20g/kg$ 之间)^[1],以往的研究只偏重于其总量的测定^[2,3],很少研究其矿物形态。即使某些含氧化钛较高的土壤(如某些氧化土)中,由于高岭石和氧化铁等矿物的大量存在,氧化钛矿物的 X 射线衍射峰常受高岭石等矿物的 X 射线衍射峰的重叠影响,其衍射谱也不十分明显,因而鉴定较为困难。为此我们尝试用选择溶解方法来浓集粘粒中的氧化钛矿物,并采用粉晶 X 射线衍射对土壤中的氧化钛矿物进行了初步的鉴定。

1 研究方法

1.1 粘粒的提取

土壤样品经去砾石和有机残体后,用 H_2O_2 去除有机质,加少量 $0.5 mol \ L^{-1}NaOH$ 把土壤 悬液 pH 调至 8.2 左右,用超声波分散,沉降法提取粘粒 $(<0.002 \mu m)$ 。

1.2 氧化钛矿物的浓集

本研究选用了 HF 处理和 NaOH 处理两种方法来浓集粘粒中的氧化钛矿物。前者常被用于土壤中水磷铝铅矿的浓集^[4],后者常用于土壤中氧化铁矿物的浓集^[5]。处理过程简述如下。

- **1.2.1** HF 处理 称取 2g 粘粒于 1000ml 聚乙烯塑料杯中,加 80ml 蒸馏水把粘粒调成悬液,加 80ml 40%HF,用聚乙烯塑料棒搅拌反应 2 分钟^[4],迅速用蒸馏水稀释至 1000ml,并立即离心分离残物(处理和分离过程应按上述时间进行,超时可能会对氧化钛矿物产生一定的影响),用热的 0.5mol L^{-1} HCl 洗残物 1 次,用蒸馏水洗残物 2 次,在 45 ℃以下烘干备用。
- **1.2.2** NaOH 处理 称取 1g 粘粒置于镍坩埚中, 加 5molL⁻¹NaOH 100ml 蒸沸 1 小时, 离心后 分离残物, 用热 5molL⁻¹NaOH 洗残物一次, 用 0. 5molL⁻¹HCl 和 1molL⁻¹ (NH₄)₂CO₃ 各洗残物

^{*} 本研究得到了英国麦考莱土地利用研究所 D. M. L. Duthie 先生的支持和帮助, 特表谢意.

一次,用乙醇洗残物若干次,在45℃以下烘干备用。

另取金红石和锐钛矿的纯矿物同时进行以上两种处理,以观察以上两种处理是否会对钛矿物产生影响。

1.2.3 XRD 鉴定 取处理前后的粘粒用样品板压片制成粉晶片,用 Siemens D**500**X 射线衍射仪进行鉴定,并用 Cok α 辐射,电压为 **40**k V,电流 **40**m A,扫描速度为 1° **2** θ / min。

2 结果与讨论

2.1 两种处理方法的效果

对15个土壤粘粒用以上两种方法处理的结果表明: HF处理粘粒后, 残物重量只为处理前的1/38~1/8, 平均为1/18.3。而用NaOH处理粘粒后残物重量约为处理前的1/2.3~1/8.5, 平均约1/5.3, 这表明用HF处理浓集效果明显高于NaOH。用NaOH和HF处理金红石和锐钛矿纯矿物的回收率均在98.3~99.1%之间, 说明这两种处理方法基本上不会对金红石和锐钛矿等产生破坏作用。

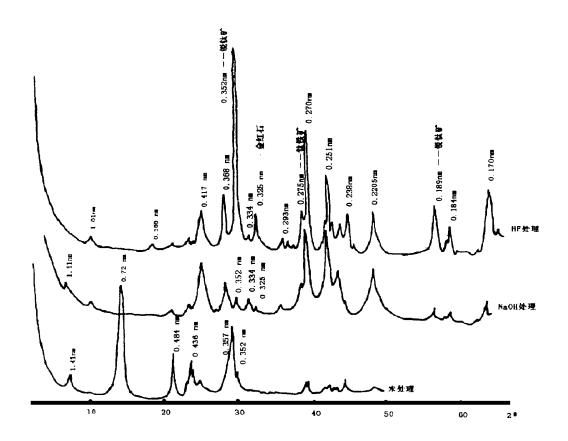


图 1 HF 和 NaOH 处理后砖红壤粘粒(< 24m)的 X 射线衍射图谱的变化

XRD 鉴定处理后的粘粒表明: NaOH 处理粘粒后,绝大部分的高岭石和三水铝石已被溶失,但云母、石英、蛭石及氧化铁等仍可保留在粘粒中,由于氧化铁、石英、云母含量大大超过氧

化钛含量, 所以虽然 NaOH 处理后粘粒 X 射线衍射的氧化钛矿物的衍射强度有所提高, 但效果不能令人十分满意。但用 HF 处理粘粒后, 绝大部分的矿物已被溶失, 包括高岭石、蛭石、埃洛石、绿泥石、三水铝石和部分石英及结晶程度一般的氧化铁, 剩余的矿物数量不多, 主要为氧化钛和部分云母、石英、长石及结晶良好的氧化铁, 因而氧化钛矿物衍射峰明显增强。

图 1 为一个由玄武岩发育砖红壤(暗红湿润铁铝土, 土号 14)的 XRD 鉴定结果。从图可知, 未经处理的样品, 其粘粒矿物主要由高岭石(0.72nm, 0.357nm)、三水铝石(0.484nm, 0.436nm)和氧化铁矿物(0.417nm, 0.27nm)及少量 1.4nm 矿物所组成, 锐钛矿最强的衍射峰(0.352nm)由于受高岭石衍射峰 0.357nm 的影响而不明显, 其他氧化钛矿物的衍射峰由于强度低, 无法鉴定。粘粒经 NaOH 处理后, 高岭石、三水铝石因溶失而衍射峰消失, 氧化铁的衍射峰(0.417nm, 0.368nm, 0.270nm, 0.251nm 和 0.2205nm)明显增强, 而锐钛矿(0.352nm)、金红石(0.325nm)和钛铁矿(0.275nm)等氧化钛矿物的 X 射线衍射峰也可较好地辨认, 但由于氧化铁矿物含量明显高于氧化钛, 因此氧化钛矿物的衍射峰仍均较弱。而经 HF 处理后, 绝大部分的矿物已被溶失(包括部分氧化铁), 锐钛矿(0.352nm, 0.189nm)、金红石(0.325nm)和钛铁矿(0.275nm)明显增强。表明用 HF 处理可较好地使土壤的氧化钛矿物浓集, 且其衍射峰可明显地与其他矿物分离, HF 处理适于作为氧化钛矿物鉴定的预处理。

2.2 土壤中主要的氧化钛矿物

样品号	土壤类型	母质	采样地点	氧化钛矿物鉴定结果
1	红壤(铝质湿润淋溶土)	石英砂岩	浙江长兴	锐钛矿为主,少量金红石
2	红壤(铝质湿润富铁土)	玄武石	浙江嵊县	锐钛矿为主,少量金红石
3	红壤(富铝湿润富铁土)	变质岩	浙江龙游	仅锐钛矿
4	红壤(富铝湿润富铁土)	变质岩	浙江衢州	锐钛矿为主,少量金红石
5	红壤(简育湿润富铁土)	花岗岩	浙江衢州	锐钛矿为主,少量金红石
6	红壤(富铝湿润富铁土)	变质岩	浙江诸暨	仅锐钛矿
7	红壤(富铝湿润富铁土)	变质岩	浙江诸暨	锐钛矿为主, 微量金红石
8	红砂土(红色正常新成土)	红砂岩	浙江龙游	锐钛矿为主,少量钛铁矿
9	红壤(粘化湿润富铁土)	Q2 红土	浙江龙游	锐钛矿为主,少量金红石,微量钛铁矿
10	红壤(铝质湿润淋溶土)	凝灰岩	浙江平阳	锐钛矿为主,少量金红石和钛铁矿
11	黄壤(铝质常湿润富铁土)	花岗岩	浙江江山	锐钛矿为主, 微量金红石和钛铁矿
12	赤红壤(简育湿润富铁土)	花岗岩	福建漳州	锐钛矿为主,少量金红石和钛铁矿
13	砖红壤(暗红湿润铁铝土)	玄武岩	广东徐闻	仅锐钛矿
14	砖红壤(暗红湿润铁铝土)	玄武岩	云南昆明	锐钛矿为主,少量金红石和钛铁矿

表 1 供试土壤及氧化钛矿物的鉴定结果

表 1 为对我国南方地区 15 个土壤粘粒样品用 HF 处理后 XRD 鉴定结果。从表可知,除部分土样外(No.15),大部分土壤中的氧化钛矿物主要为锐钛矿,金红石和钛铁矿仅少量或微量出现,表明这些中的氧化钛多为次生的,是风化的产物。

云南昆明

锐钛矿和钛铁矿为主,少量金红石

玄武岩

参考文献

- 1 熊毅. 土壤胶体(第一册). 北京: 科学出版社, 1982, 218~223
- 2 Sherman G D, Soil Sci. Soc. Am. Proc., 1952, 16:15 ~ 18
- 3 Karim A. J. Soil Sci., 1953, 4:56 ~ 58

砖红壤(暗红湿润铁铝土)

15

- 4 Bain D C. Mineralogical Magazine 1970, 37: 934 ~ 938
- 5 Kampf N, Schwertmann U. Clay Minerals, 1982, 17: 357~363