第4期

1999年

208-213

稀盐溶性氮表征石灰性土壤 供氮能力的研究

沙丽清 周斐德 邵则瑶 (中国科学院昆明生态研究所 昆明 650223) (中国农业大学植物营养系)

本文对稀盐(0.01mol·L¹NaHCO₃, 0.01mol·L²CaCl₂(100℃, 25℃))溶性氮表征石灰性土壤 的供氣能力做了探讨。研究结果表明,土壤浸出液中的全氯(TN)、有机态氯(Org. N), NO₃-N 分别与浸出液的 总吸光量 (Q_T) 、有机质的吸光量 (Q_{DM}) 、 NO_3 -N 的吸光量 (Q_{NQ_1}) 高度相关。除 Q_{DM} 和 Q_{M0} 外, Q_T , Q_{NQ_1} ,TN, NO₁-N, Org. N 与盆栽冬小麦相对吸氮量高度相关。稀益溶液浸提法, 特别是 0.01mol·L·l NaFKO₃ 和 0.01mol·L L1CaCl2(25℃)浸提法,具有操作简便、快速、经济等优越性。

关键词 彩盐溶性氮;石灰性土壤;供氮能力

用 0.01mol·L·1CaCl。作为浸提剂来提取土壤氮的研究已有许多报道。由 Stanford 提出 并改进的 0.01 mol·L-1 CaCl₂ 加热提取法^[1]及高温高压提取法(autoclaving)^[2]提取的氮与厌 气培养法所测得的氮相关性高, autoclaving 法还能与土壤的氮矿化位势联系在一起, 对研究 土壤向植物供氮的特性具有现实意义,因而在美国作为测定土壤有效氮的推荐方法[3]。但 此方法需在高温高压下提取 16 小时,操作较为麻烦,难于在国内推广应用。

用 0.01mol·L·1CaHOO。提取土壤氮由 Maclean (1964)提出, 所提取的全氮与燕麦吸氮 量相关性高[4]。Fox 和 Piekielek(1978)的田间玉米试验表明, 0, 01mol·L-1CaCla 提取的氮 与玉米的吸氮量相关性达 1% 显著水平[5], 他们还应用 0.01 $mol\cdot L^1$ CaClo 和 0.01 $mol\cdot L^1$ NaHCO3 土壤浸出液在 260nm 处的吸光度作为表征土壤供氮能力的指标, 并推荐用 0. 01mol·L·1NaHOO。土壤浸出液在 260mm 处的吸光度来预测玉米的需氮肥量[6]。也有 人 $^{[7,8]}$ 做了与此类似的工作。Sippola 等 $(1986)^{[9]}$, Gigoux 等 $^{[10]}$ 还应用 205nm 处的吸光度 来表征土壤的供氮能力,研究表明吸光度不仅与植物吸收氮量和培养法所得氮量相关性高, 还具有简单、快速、经济等优点。但有些[11,12,13,14]研究表明,260nm 处的吸光度与植物吸氮 量或其他参比方法的相关性低、不适宜作表征土壤供氮能力的指标。

易小琳、李酉开(1984)提出了吸光量(Q)的概念。在石灰性土壤上, 电超滤的总吸光量 $(EUF - Q_T)$ 和有机质的吸光量 $(EUF - Q_{OM})$ 可作为表征石灰性土壤供氮能力的指标 $^{[15]}$,但 该方法需要专门的设备,难以普及和推广。在本文的研究中引用了吸光量(Q)概念,试图应 用3种稀盐溶液提取土壤有效氮的方法来表征石灰性土壤稀盐溶液浸出液中氮的含量及其 生物有效性。

云南省自然科学基金(97CO17R)资助。本文曾得到中国农业大学植物营养系李酉开、韩琅丰数授的指导、中部合 作项目提供土壤样品和部分分析数据、深衰谢意。

1 材料及方法

1.1 供试土壤样品及主要仪器

盆栽试验土样:共33个。选用中国农业大学与德国 Hohenheim 大学协作科研项目"北京土壤-作物测试系统的建立与施肥建议的研究"中的盆栽冬小麦试验土样。所用主要仪器有:1)连续流动分析仪:Technicon AAII;2)Shimadzu UV-240 分光光度计;3)Shimadzu UV-120-02 分光光度计。

1.2 土壤分析方法

- 1. 土壤稀盐溶性氮的提取方法
- 1) 0.01mol·L·¹CaHCO₃ 提取法 即改进的 Maclean 法:5.00g 风干土样加 0.01mol·L·¹NaHCO₃ 100.0ml 于 250ml 三角瓶中,25℃下振荡 15 分钟,加入 25% (w/v)KCl 2ml,摇动数秒钟,静置片刻后过滤。
- 2) 回流法 即改进的 Livens 法: 用 0.01mol·L·¹CaCl₂ 代替水, 以便于过滤。100g 风干土样加 0.01mol·L·¹CaCl₂60.0ml 于 150ml 回流装置中, 100℃ 下回流 1 小时, 取下冷却后过滤。
- 3) 0.01mol·L¹CaCl₂ 常温(25℃)提取法 5.00g 风干土样加 0.01mol·L¹CaCl₂ 100.0ml于 250ml 三角瓶中,25℃下振荡半小时,过滤。
 - 2. 稀盐浸出液中氮定量方法

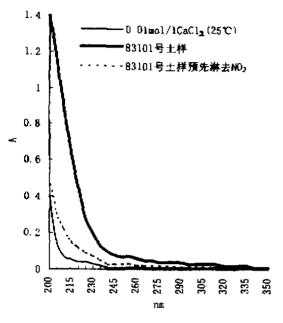
 $NO_3-N:NO_3^-$ 经硫酸肼还原为 NO_2^- 后,根据 Griess – Ilosvay 反应定量,用 Technicon AAII 测定^[16];NH₄-N:用 Technicon AAII 测定^[16];全氮(TN):用 Technicon AAII 测定,各种形态的氮经 $UV-S_2O_6^{2-}$ 氧化成 NO_3^- 后测得 NO_3 -N 量即是全氮^[16];有机态氮(Org.N): Org. $N=TN-NO_3$ -N; 吸光量 Q^[15]。

- 3. 测定土壤潜在有效有机态氮的快速蒸馏法^[17] 总馏出氮减去初始 NH₄-N 即为潜在有效有机氮。
- 4. 非还原碱解氮[18]

1.3 冬小麦盆栽试验

采用中德协作项目的冬小麦盆栽试验数据。该试验设 NK, PK, NP, NPK 四个处理。

2 结果与讨论


早地土壤 NH₄-N 含量少,稀盐溶液提取的量就更小,对评价土壤的供氮能力意义不大, 因而本文未采用 NH₄-N 测定数据。

2.1 Q_T与TN, Q_{OM}与Org.N, Q₂₆₀与Org.N, Q_{NO}, 与NO₃-N的关系

易小琳、李酉开(1984)提出的吸光量(Q)的概念, 比之 Fox 等^[6]使用的吸光度(A)表征土壤供氮能力更具科学性。Q在一定范围内具有加和性,用 EUF - Q 表征石灰性旱地土壤的供氮能力是一个行之有效的方法^[15]。

- 2.1.1 0.01mol·L⁻¹NaCl₂(25℃)和 0.01mol·L⁻¹NaHCO₃ 浸出液的紫外吸收光谱特征
 - 0.01mol·L·1CaCl₂ 和 0.01mol·L·1NaHCO₃ 浸出液的紫外吸收光谱见图 1 和图 2, 二图

谱相似。在整个扫描范围 $(200\sim350\,\mathrm{nm})$ 内, $0.01\,\mathrm{mol}\cdot\mathrm{L}^{-1}\,\mathrm{NaHCO}_3$ 浸出液的 A 值高于 $0.01\,\mathrm{mol}\cdot\mathrm{L}^{-1}\,\mathrm{CaCl}_2(25\,\mathrm{C})$ 浸出液的 A 值, 这是因为 $0.01\,\mathrm{mol}\cdot\mathrm{L}^{-1}\,\mathrm{NaHCO}_3$ 溶液的 pH 较高, 提取的有机质较多的缘故。

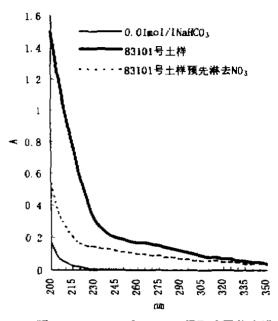


图 1 0.01mol·L⁻¹CaCl₂(25℃)提取液吸收光谱

图 2 0.01mol·L⁻¹NaHCO₂ 提取液吸收光谱

210nm 测得的吸光度 A_{210} 主要是 NO_3^+ 、 NO_2^+ 和双键有机物的吸收 $^{[5]}$,预先淋去 NO_3^+ (用 100ml 浸提剂反复淋洗 2 次)的土壤浸出液其 A_{210} 降低。240~350nm 内主要是有机质的吸收,随波长增加 A 值降低,从图 1 和图 2 可以看出各曲线在此波长范围内近于彼此平行,可选取 260nm 的吸光度 A_{260} 换算为 Q_{260} 表征有机质的含量。稀盐溶液提取的有机质 C/N 比较为恒定 $^{[5]}$,因而也可用 Q_{260} 表征有机氮的含量, Q_{260} 与 Org. N 相关极显著, $r=0.8151^***$ 。这部分有机氮可被植物吸收利用,似乎可作为评价土壤供氮的指标。

2.1.2 Q_T与TN, Q_{OM}与Org. N, N_{NO}, 与NO₃-N的关系

 Q_T 为土壤浸出液在 210nm 处的总吸光量, Q_{OM} 为有机质在 210nm 处的吸光量, Q_{NO_3} 为 NO_3^+ 在 210nm 处的吸光量, 它们分别与 TN, Org. N 和 NO_3 -N 都有极显著的相关性, r 分别 为 0.9718, 0.7663 和 0.9999。 Q_T , Q_{OM} , Q_{NO_3} 可作为表征土壤供氧的指标。

2.2 各方法氮测定值与盆栽冬小麦试验结果的相关研究

从表1可以看出,在 Maclean 法中,除 Q_{260} 和 Q_{CM} 与冬小麦相对吸氮量相关性不显著 外,其余测定值与冬小麦相对吸氮量的相关性均达 0.1% 显著水平, r 在 $0.741 \sim 0.877$ 之间, r² 在 $0.549 \sim 0.769$ 之间,且这些 r 值之间的差异 t 检验不显著(表 2)。

在 $CaCl_2(25\C)$ 法中, Q_{260} 和 Q_{OM} 与冬小麦相对吸氮量的相关性亦较低, r 分别为 0.291 和 0.438。 Q_T , Q_{NO_3} , NO_3 -N 与冬小麦相对吸氮量的相关性高, r 分别为 0.833, 0.827 和 0.827, 均达 0.1% 显著水平, 且这 3 个 r 值间的差异 t 检验不显著。

在 $CaCl_2(100C)$ 法中, Q_{200} 与冬小麦相对吸氮量的相关性不显著, r 为 0.291, 而 Q_T 的 r

为 0.761, 达 0.1% 显著水平。

表 1 各化学测试值与盆栽冬小麦成熟期(茎叶+籽粒)相对吸氮量 的相关系数(r)和决定系数(2)

VEC 1211	y = 1	e+bx	-7 5. □	y=	a+box
项 目"	r	r ²	一 项 目	r	r ²
土壤有机质	0.104	0.011	Maclean Q ₇	0.803***	0.645
土壤全氯	0.316	0.100	Maclean Q ₂₆₀	0,203	0.041
非还原 碱解氯	0.624	0.389	Meclean TN	0.877***	0.769
总馏出氯	0.749	0.561	Maclean NO₃-N	0.838***	0.702
初始 NH ₄ -N	0.749	0.561	Maclean Org. N	0.741	0.549
潜在有机态氯	0.724	0.524	Maclean Qom	0.160	0.026
$EUF - Q_T(I - II)$	0.853	0.728	Maclean Q _{NO3}	0.829***	0.687
$EUF = Q_T(\mathbb{I} \!\!\!I)$	0.608	0.370	$Q_T(C_0Cl_2, 100^{\circ}C)$	0.761	0.579
EUF-Qr(I-II)	0.848	0.719	Q ₂₆₀ (CaCl ₂ , 100℃)	0.291	0.085
$EUF-Q_{OM}(I-II)$	0.432	0.187	Q ₇ (C ₆ Cl ₂ , 25°C)	0.833***	0.694
EUF-Q _{OM} (∭)	0.502	0.252	Q ₂₆₀ (C ₆ Cl ₂ , 25°C)	0, 291	0.085
EUF-Q _{OM} (I-II)	0.479	0.229	Q _{GM} (CaCl ₂ , 25°C)	0.4304	0.185
EUF-Q _{NO2} (I-I)	0.833	0.694	$Q_{NO_3}(C_8Cl_2, 25^{\circ}C)$	0.827***	0.684
EUF-Q _{NO3} (III)	0.439	0.193	NO ₅ -N (CeCl ₂ , 25°C)	0.827	0.684
$EUF - Q_{NO_3}(I - [])$	0.829	0.687			

n = 33, df = 33 - 2 = 31, $r_{0.05} = 0.345$, $r_{0.01} = 0.443$, $r_{0.001} = 0.547$

在 Maclean, CaCl₂(100°C)和 CaCl₂(25°C)这 3 种提取法中, Q_{OM} , Q_{260} 与冬小麦相对吸 氮量的相关性都较差, 因而本试验结果说明不宜用它们作为评价土壤供氮能力的指标。3 种方法其余各 r 值间的差异不显著, 且与 EUF – Q_T 和 EUF – Q_{NO_3} I – II , I – II 组分 r 值 间的差异亦不显著, 表明这 3 种方法在提取植物有效氮方面与 EUF 法一样有效, 而且在操作简便、经济、易于推广使用等方面优于 EUF 法。

总馏出氮、初始 NH₄-N 和潜在有机态氮与冬小麦相对吸氮量的相关性均达 0.1% 显著水平,r 值略高于非还原碱解氮的 r 值,各 r 值间的差异 t 检验不显著,但总馏出氮、初始 NH₄-N 和潜在有机态氮的 r 均在 0.52 以上,而非还原碱解氮的 r² 只有 0.39。总馏出氮测定值较高,包含了 NH₄-N 和潜在有机态氮,因而可用总馏出氮评价土壤供应有效氮的能力,该方法优于非还原碱解扩散法。在 3 种稀盐溶液提取法中,CaCl₂(100℃)法需 100℃下回流 1 小时,操作较为麻烦,因而实际应用中建议采用 Maclean 法和 CaCl₂(25℃)法。Q₁ 与 TN、Q_{NO₃}与 NO₃-N 之间具有极高的相关性,因而在具备自动分析仪的条件下,可测定 NO₃-N 和 TN,在不具备自动分析仪的条件下,可测定 NO₃-N 和 TN,在不具备自动分析仪的条件下,可测定 Q_T,Q_{NO₃}和 NO₃-N。

[★]相对吸氮量数据引自中德合作项目. ★★此部分化学测试值引自中德合作项目.

8.2 各方法有效氮测试值与累统冬小麦相对吸氨量相关系数何,值

				4			H 2 A B A B B B B B B B B B B B B B B B B	さいを再	X X	K K E		<u>=</u>				
	非还项 具备复	母虫	EUF-Q _r	_	EUF-Q _r	EUF-0 _{kg}	EUF-Qr EUF-Qr EUF-Qry, EUF-Qry, EUF-Qry, Mackean Mackean Mackean Mackean Mackean CaQ, 100°C CaQ, 25°C CaQ, 25°C (II) (I-II) (I-II) (II) (II) (II) (III) (IIII) (III) (II	EUF-Cho,	Mackan	Maclean	Mackan NO N	Macken Macken	Macken	CaCly, 100 C	GCB, 25E	3d2, 25(
以存出其	9.0					1	/=	(m _ T)	7		? ?	8	5	9	5	\$
EUF-Q _r (I-I)	2.06 1.10	1.10								İ						
EUF-Q₁(■)	90.0	0.06 1.02	2,12													
$\overline{\mathrm{EUF}} - Q_1(\mathrm{I} - \overline{1\!\!\mathrm{I}})$	2.06* 1.10	1.10	6	2.12												
EUF-Q ₁₀₃ (I - II)	1.79	0.83	0.26	1.86	97.0							!				
FUF-Quy (II)	96.0	28.	3.04	0.92	3.04.	2.77.										
EUF-Q _{koj} (I - 🎚)	1.79	0.83	0.26	1.8%	0.26	0	2.77.					}				
Mackan Q _T	1.45	0.49	0.61	1.51	0.61	0.34	2.43"	0.34								
Macleun TN	2.52	1.56	0.46	2.58	0.46	0.73	3.50	0.73	1.07							
Macken NO, - N	1.92	96.0	0.14	1.98	0.14	0.13	2.90"	0, 13	0.47	0.60						
Maclean Org. N	0.87	0.00	1.19	0.93	1.19	0.92	1.86	0.92	0.58	1.65	1.05					
Mactean Quo	1.73	0.83	0.26	1.86	97.0	0	2.78**	0	0.34	0.73	0.13	0.92				
CaCz, 100°C Qr	86 Q	0.00	1.01	1.11	1.01	0.74	2.03	0.74	0.40	1.47	0.87	0.18	97.0			
CeC2, 25°C Qr	1.73	0.83	0.26	1.86	97.0	0	2.78"	0	0.34	0.73	0.13	0.92	0	0.74		
CaCt, 25°C Quo	1.73	0.83	1.26	1.86	97.0	0	2.78"	0	9.34	0.73	0.13	0.92	0	0.74	-	
Maclean NO ₅ – N	1.73 0.83	0.83	1.26	1.86	97.0	0	2.78	=	9.34	0.73	0.13	0.92	۰	0.74	0	0
$df = (33-3) + (33-3) = 60$, t_0 $t_0 = 2.05$, t_0 .	33-3)=	-60, to	$_{05}$ = 2.05,	to.m = 2,66	9											

从上面的讨论中可以看出 Maclean 法, CaCl₂(100℃)法和 CaCl₂(25℃)法提取的氮测定值与冬小麦相对吸收氮量及与常用的化学方法和 EUF 法氮测定值间都有极高的相关性, 特别是 Maclean 法和 CaCl₂(25℃)法还具有操作简便、快速、经济、易于推广等特点。

3 小结

- 1,0.01 $mol\cdot L^{-1}NaHCO_3$,0.01 $mol\cdot L^{-1}CaCl_2(25℃)$ 提取的氮测定值与盆栽冬小麦相对吸收氮量和其他化学方法、EUF 法提取的氮测定值间的相关性高,能较好地反映石灰性土壤供应氮的水平,且操作简便、快速、经济、便于推广。
- 2, Maclean (即 0.01mol·L⁻¹NaHCO, 浸提)法经改进后, 克服了由于浸提过程中土壤胶体分散而带来的过滤困难、滤液不清等缺点, 为此方法的广泛应用创造了条件。
 - 3, 快速蒸馏法优于目前普遍采用的碱解扩散法。

参考文献

- 1 Stanford G. Soil Science, 1968, 106(5);345~351
- 2 Smith S J and Stanford G. Soil Science, 1971, 111(4):228-232
- 3 Page A L. Methods of Soil Analysis, Part 2, Chemical and Microbiological properties, Second Edition. Madison: American Society of Agronomy, 1982, 711~734
- 4 MacLean A A. Nature, 1964, 203; 1307~1308
- 5 Fox R H and Piekielek W P. Soil Soc. Am. J., 1978, 42(5):751~753
- 6 Fox R H and Piekielek W P. Soil Sci. Soc. Am. J., 1978, 42(5):747~750
- 7 Fox R H et al. Buttetin, Pennsylvania State University, Agreultural Experiment Station, 1983, (483):32 -42
- 8 Gerderman R H et al. Commun. in Soil Sci. Plant Anal., 1988, 19(6):755~772
- 9 Sippola J et al. Annales Agriculturae Fenniae, 1986, 24(3):125~129
- 10 Gigoux M et al. Canadian Journal of Soil Science, 1987, 67(3):521~531
- 11 Gianello C and Bremmer J M. Commun. in Soil Sci. Plant Anal., 1986, 17(2):215-236
- 12 Rodrigues Filho et al. Bragantia, 1984, 43(2):313~325
- 13 Ruby T P and Griffin G F. Commun. in Soil Sci. Plant Anal., 1985, 16(6):569~581
- 14 Whitehead D C et al. Journal of the Science of Food and Agriculture, 1981, 32(3);211-218
- 15 易小琳, 李酉开, 电超滤浸提土壤养分的研究Ⅱ, 表征旱地土壤有效氮的电超滤吸光量, 北京农业大学学报, 1990, 16(3):285~291
- 16 International Institute of Tropical Agriculture. Automated and semi-automated methods for soil and plant analysis. 1982
- 17 Gianello C et al. Commun. in Soil Sci. Plant Anal., 19(4):1551~1568
- 18 中国土壤学会农业化学专业委员会编、土壤农业化学常规分析法、北京;科学出版社、1983