土壤不同形态钾含量与土壤颗粒的关系

赵斌1 李静2 马丽3 郑耀4

(1. 辽宁省土肥总站 沈阳 110034; 2. 辽宁省绿色食品发展中心; 3. 辽阳市土肥站; 4. 大连市金州区界树农场)

摘 要 土壤含 K 矿物同其他矿物颗粒一起均分布在不同粒级的土粒中,这些土粒在不同的土壤中构成了不同的配合比例,形成不同的土壤质地的属性。统计表明,<0.05mm 与<0.01mm 粒级间呈极显著线性相关 (r=0.896**, n=92),相关分析表明,不同粒级的土粒与不同形态 K 间呈显著线性或曲线显著相关,而全 K 只与 <0.05mm 粒径的土粒呈极显著相关(r=0.234**, n=73),全 K 与速效 K 的数量关系通过全 K <0.05mm 粒级与速效 K 系统相关组合的算式以数学的方法计算速效 K 含量。

关键词 土壤;全 K;速效 K;缓效 K;质地;土壤粒级

K 是土壤重要的理化指标,亦是作物吸收量最多的营养元素之一。土壤中的 K 素就其来源有 3 个方面,一是土壤中的含 K 矿物,二是植物残体或有机肥料归还的 K 素,三是人工施入的 K 肥。但大量研究资料表明,土壤中的 K 是主要的自然补给源。K 以不同形态存在于土壤中,从植物营养角度分为速效 K、缓效 K 和矿物 K,从化学角度分为水溶性 K、交换性 K、非交换性 K 和结构 K,全 K则是不同形态 K的总和。为进一步开发全 K测定值在土肥工作中的应用,则必须探明土壤不同形态 K含量与土壤颗粒的关系及不同形态 K间的数量关系。

1 材料与方法

1.1 资料来源

- 1.1.1 土壤普查资料 选取沈阳市 92 个点的土壤普查资料,每点土壤理化项目分析了有机质、全 N、全 P、全 K、碱解 N、有效 P、速效 K、CEC、pH 等项,颗粒组成分析了 $3 \sim 1$ mm、 $1 \sim 0.25$ mm、 $0.25 \sim 0.05$ mm、 $0.05 \sim 0.01$ mm、 $0.01 \sim 0.005$ mm 和 $0.005 \sim 0.001$ mm、<0.001mm7 个粒级。
- 1.1.2 土壤供 K 研究资料 沈阳农业大学常丽新于 1991 年关于《沈阳市农田土壤的供 钾能力项目》9 个点的研究资料 (1),供试土壤分析了有机质、全 N、全 P、全 K、速效 K、缓效 K、CEC、pH 等项,颗粒组成分析了<0.05mm、<0.01mm、<0.005mm和 和<0.001mm4个粒级。
- 1.1.3 肥料试验资料 选取沈阳市土肥站 $1986 \sim 1992$ 年 64 个点的田间肥料试验资料,供试土壤分析了有机质、全 N、碱解 N、有效 P、速效 K、缓效 K 等项。
- 1.1.4 航空测 K 资料 核工业部遥感所提供的 35 个点的航空伽玛能谱遥感技术测定土 壤全 K 资料。

1.2 分析方法

土壤有机质、全 N、全 P、全 K、碱解 N、有效 P、速效 K、CEC、pH 等项目采用常规方法测定。机械组成分析采用比重计法。土壤缓效 K 用 1mol/L HNO_3 煮沸 10 min 后测定。

1.3 供试土壤

供试土壤采用沈阳境内的草甸型水稻土、棕壤型水稻土、冲积型草甸土(包括菜园土)、 黄土状或坡洪积棕壤。

2 结果与讨论

土壤不同形态 K 的含量及其变化,主要由其在土壤矿物中存在的部位及不同粒级矿物 组成所决定的。新近的研究资料揭示了土壤颗粒不同粒级组成与含 K 矿物种类及其间的数 量关系[2]。研究资料表明,同一土壤,随着粒径的增加,矿物组成趋于简单,次生粘土矿 物类型及含量减少,原生矿物及含量增加,<0.01mm 粒级的矿物组成以次生含 K 矿物水云 母为主,交换性 K 占 82.6%,缓效 K 占 69.9%,全 K 占 58.7%;在<0.01mm 粒级都以原生 矿物云母、长石为主。在<0.05mm 粒级中,交换性 K 占 95.5%,缓效 K 占 90.5%,全 K 占 80%,全 K中的90~98%是矿物 K。<0.05mm 的粒级是土壤当季和长远供 K的主要贡献者。

2.1 土壤不同粒级间的关系

土壤颗粒的不同粒级是由岩石和土壤母质在成土过程中形成的,原生矿物和次生矿物 分布在各粒级的土粒中,极大地影响着土壤的理化性质和肥力特征。部分供试土壤的主要 理化性质列于表 1。

土壤名称		g/kg		mg/kg	< 0.05	< 0.01	阳离子 代换量
그 생 나 10	有机质	全 N	全 K	速效 K	mm 粒级	mm 粒级	(cmol/L)
1. 耕型壤质草甸土	18.4	1.20	26.8	154	53.55	27.28	11.35
2. 壤质草甸土型菜园土	20.0	1.26	24.3	51	28.75	20.67	14.74
3. 耕型壤质碳酸盐草甸土	13.6	0.94	22.3	90	30.77	28.75	19.54
4. 耕型壤质深淀黄土状潮棕壤	18.5	1.02	23.8	76	24.36	21.67	16.79
5. 耕型沙质碳酸盐草甸土	8.1	0.47	24.4	91	20.26	17.03	8.10
6. 耕型深砂底壤质草甸土	19.0	1.16	25.4	112	47.95	40.88	20.23
7. 耕型淤黑黄壤质碳酸盐草甸土	14.5	0.95	29.1	81	43.30	37.247	23.50
8. 耕型黑粘质碳酸盐草甸土	20.0	1.15	29.5	126	56.24	48.16	29.05
9. 草甸型水稻土	12.4	0.95	30.0	57	60.57	32.62	17.10
10. 冲积型菜园土	20.2	1.20	31.2	150	67.57	57.54	32.51

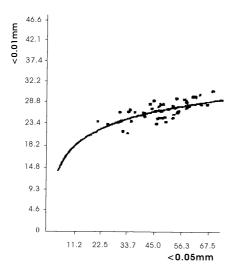

1 部分供试土壤的主要理化性质

表 2 供试土壤理化因子间相关阵

	1	2	3	4	5	6	7
	C%	N%	K%	K-mg/kg	<0.05mm	<0.01mm	CEC
1	1	0.829**	-0.159	0.211	0.215	0.193	0.354**
2		1	-0.001	0.173	0.234*	0.214*	0.337**
3			1	-0.190	0.277**	0.177	0.072
4				1	0.543**	0.599**	0.504**
5					1	0.896**	0.636**
6						1	0.715**
7							1
X(平均)	19.2	1.15	26.8	94.9	44.32	34.60	18.45
S(标准差)	7.5	0.35	2.1	24.9	13.67	11.23	5.55
N(样数)	92	92	73	86	90	92	91

为探索表中各理化因子间的相关关系。对全部供试土壤资料进行了相关分析,结果列于表 2。由表 2 中看出 ,土壤理化因子间相关显著性的顺序为 :土壤颗粒<0.05mm 粒级(0.05) 与<0.01mm 粒级(0.01)(r=0.896**)>有机质(C%)与全 N(N%) (r=0.829**) ><0.01mm 粒级与 阳离子代换量(CEC)(r=0.715**)><0.05mm 粒级与 CEC(r=0.636**)>速效 K(K-mg/kg)与 <0.01mm 粒级(r=0.599**)>速效 K 与<0.05mm 粒级(r=0.543**)>速效 K 与 CEC(r=0.504**)> 有机质与 CEC(r=0.354**)>全 N 与 CEC(r=0.337**)>全 K(K%)与<0.05mm 粒级(r=0.277**)>全 N 与<0.05mm 粒级(r=0.234**)。值得注意的是,在大样本条件下,土壤 0.05mm 与<0.01mm 两个颗粒粒级与速效 K 间均呈极显著相关 (r=0.543**、0.599**),土壤全 K 仅与<0.05mm 的土壤粒级呈极显著相关(r=0.234)。

统计表明,土壤<0.05mm 粒级(x)与<0.01mm (y)之间呈极显著线性相关(图 1): y=0.7713+0.8181x n=84 r=0.9568** Se (标准误)=3.38(%) ,供试土壤<0.01mm 粒级平均约占<0.05mm 粒级的 80%。

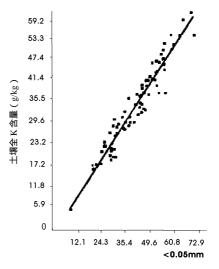


图 1 土壤<0.05mm 粒级与<0.01mm 粒级的关系

图 2 < 0.05mm 粒级与土壤全 K 的关系

2.2 土壤粒级与不同形态 K 间含量的关系

2.2.1 土壤粒级与全 K 的关系 土壤矿物来自土壤母岩,约占土体重量的 95%以上,占土体容积的 40%以上,是多种矿质养分,包括 K 素的供给源。所以全省各地有同土壤类型土壤,常因其矿物颗粒组成及其化学成分的不同,表现为不同的肥力水平。土壤的含 K 量主要受土壤中含 K 矿物类型及数量的影响,没有明显的地理分布的规律性 [3],辽宁省土壤的全 K 量以褐土、草甸风沙土、盐化水稻土为最高。

依表 2 的相关检索 , 对<0.05mm 粒级(x)与全 K(y)之间的关系用 5 种数学模型进行了统计 , 均达到了 1%显著水平 , 结果列于表 3.

由表中看出,以回归方程标准误(Se)评价精度,除 y = x/(a + bx) 外,其他 4 种模型精度基本一致(图 2)。如应用于预测,需提高方程的精度,为此,作进一步的回归统计,结果如下:

y=20.6302+0.1330x r=0.7227 Se= 1.44(g/kg) n=50 y=6.4695+12.3001log r=0.6967 Se=1.50(g/kg) n=50 Y = (-215.8386 + 31.5758x)/x r=0.9798**Se=1.63(g/kg) n=50

表 3	土壤颗粒<0.	05mm	粒级与全	K的关系
180		OJIIIII	111 JX — J —	ハロンへぶ

数学模型	a	b	R	Se	n
Y=a+bx	24.3111	0.0504	0.3180**	1.89	72
Y=a+logx	18.2813	5.0698	0.3233**	1.90	72
Y = (a + bx) / x	-101.7035	29.0119	0.9694**	1.91	72
Y = x/(a + bx)	15.6205	3.4296	0.9536**	1.91	
$Y = a + b\sqrt{x}$	22.1684	0.6646	0.3163**	1.89	72

2.2.2 土壤粒级与速效 K 及缓效 K 的关系 小于 0.05mm 粒级与土壤速效 K 之间亦有 很好的相关性(r=0.543**),回归关系如下:

y=10.4945+20.0711x

r=0.6969** Se=14.8(mg/kg)

小于 0.01mm 粒级与土壤缓效 K 之间有更好的相关关系,回归方程如下:

y=49.4458+1.2132x

r=0.7293** Se=12.9(mg/kg) n=67

沈阳农业大学常丽新 $^{[1]}$ 在土供壤 K 能力的研究中,测试了 9 种土壤不同形态 K 的含量 及粒级组成(表 4),缓效 K 用 2 mol/L 冷 HNO_3 浸提,振荡 30 min 处理。统计表明,当相关 达 1%水平时, <0.01mm 粒级与缓效 K 呈极显著相关:

y=11.0990+21.597x

r=0.7415**

沈阳农大供试土壤的基本理化性状 表 4

土壤名称	有机质 (g/kg)	全 K (g/kg)	缓效 K (g/kg)	速效 K (mg/kg)	<0.05 mm 粒级	<0.01 mm 粒级	质地
1. 耕型壤质草甸土	16.5	28.9	28.3	73.2	56.78	46.80	重壤
2. 壤质草甸土型菜园土	12.4	30.0	8.4	56.6	60.57	32.62	中壤
3. 耕型壤质碳酸盐草甸土	16.0	30.0	20.9	81.7	59.64	30.01	中壤
4. 耕型壤质深淀黄土状潮棕壤	20.2	31.2	62.8	149.9	67.57	57.54	重壤
5. 耕型沙质碳酸盐草甸土	14.3	30.5	14.1	78.1	62.46	35.74	中壤
6. 耕型深砂底壤质草甸土	16.0	30.0	31.3	74.3	38.92	28.63	轻壤
7. 耕型淤黑黄壤质碳酸盐草甸土	12.0	28.0	23.9	58.0	31.06	22.43	轻壤
8. 耕型黑粘质碳酸盐草甸土	15.7	28.4	18.2	63.7	35.89	28.15	轻壤
9. 草甸型水稻土	17.2	25.7	21.9	116.0	39.25	36.14	中壤

2.3 土壤不同 K 形态间的关系

2.3.1 缓效 K 含量与速效 K 含量的关系 沈阳市土肥站于 1986~1991 年设置了 64 个 关于土壤供 K 能力的田间试验,对供试土壤测定了土壤缓效 K 及速效 K。供试土壤缓效 K 的含量在 208~1032 mg/kg 之间,速效 K 平均含量约占缓效 K 含量的 22%。对缓效 K(x) 与速效 K(y)进行统计分析,其间呈显著曲线相关,回归关系如下:

Y=320.2051+159.1020 log x n=64 r=0.7420**

F=75.93 Se=16.3(mg/kg)

由表 1 的相关分析中得知,土壤全 K 与速 2.3.2 土壤全 K 含量与速效 K 含量的关系 效 K 之间无直接显著的相关,但可通过与土壤颗粒质地的系统相关计算出二者的数量关 系。系统相关方程由3种算式组成:

1. <0.05mm 粒级(x)与土壤全 K(y)的线性回归或曲线回归方程:

$$y=a_1+b_1x$$
 $x=(y-a_1)/b_1$ $y=a_1+b_1 \cdot logx$, $x=10^{(y-a_1)/b_1}$ $y=(a_1+b_1x)/x$ $x=a/(y-b_1)$

- 2. < 0.05 mm 粒级(x)与<0.01 mm 粒级线性回归方程: $y=a_2+b_2x$
- 3. <0.01mm 粒级(x)与速效 K(y)线性回归方程: $y=a_3+b_3x$

将3种回归方程组合成8种综合算式计算土壤速效 K:

```
y_1 = a_3 + b_3 \cdot (a_2 + b_2 \cdot ((x_1 - a_1)/b_1)) y_2 = a_3 + b_3 \cdot (a_2 + b_2 \cdot (a_1 - b_1 x))

y_3 = a_3 + b_3 \cdot (a_2 + b_2 \cdot (a_1 + b_1 x)/x) y_4 = a_3 + b_3 \cdot (a_2 + b_2 \cdot 10^{(x-a1/b1)})

y_5 = a_3 + b_3 \cdot (a_2 + b_2 \cdot (a_1/(x - b_1))) y_6 = a_3 + b_3 \cdot (a_2 + b_2 \cdot ((x - a_1)/b_1))

y_7 = a_2 + b_2 \cdot (a_1 + b_1 x) y_8 = a_2 + b_2 \cdot (a_1 + b_1 x)
```

上8式中,x为土壤全 K(mg/kg), y_i 为速效 K(mg/kg)。上8式的回归系数如下:

y_I	a_{l}	b_1	a_2	b_2	a_3	b_3
\mathbf{y}_1	20.6302	0.1330	-0.3995	0.8080	49.4458	1.2132
\mathbf{y}_2	-55.4419	3.7816	-0.3995	0.8080	49.4458	1.2132
y ₃	-2195.5872	130.8705	-0.3995	0.8080	49.4458	1.2132
y_4	-6.4647	12.3028	-0.3995	0.8080	49.4458	1.2132
y ₅	-249.9551	32.0312	-0.3995	0.8080	49.4458	1.2132
y_6	20.6302	0.1330	0.2019	0.7294	44.0282	1.2221
y_7	-55.4419	3.7816	58.0877	0.7769		
y 8	-55.4419	3.7816	10.9495	2.0711		

以上述 8 种综合算式对 49 组数据的速效 K 预测值进行计算,与速效 K 实测值进行比较。统计表明,第 8 种算式误差最小,预测值平均值与实测值平均值相差 2.0 mg/kg,相对误差为 2.0%(表 5)。速效 K 约占全 K 的 0.37%。

表 5 土壤速效 K 回归平均值(y_i)与实测平均值

	全 K 实 测值	速效 K 实测值	y_1	y ₂	y ₃	y 4	y 5	y ₆	y 7	y 8
平均值	26.3	98	91	92	95	92	106	82	92	100
相差(%)			7.1	6.1	3.1	6.1	8.2	16.3	6.1	2.0

2.3.3 土壤全 K 化学测定值与航空测定值的关系 核工业部提供的土壤全 K 值是采航空伽玛能谱遥感测定值(以下简称航空 K),是以 30m 为半径的区域面积平均值。为比较与同一区域内以化学方法测定的土壤全 K 值(以下简称化学 K)之间的关系,在新城子区选取了 32 个剖面点。

统计结果表明: 32 个点的土壤全 K 平均值化学测定为 27.8g/kg, 航空测定为 20.4g/kg, 二者相差 7.4g/kg, 后者占前者的 73.4%。为探明其间的相关关系,以 4 种教学模型进行回归统计,结果如下:

y=a+blogx R=0.0408 Se=2.2(g/kg) y=a+bx R=0.0492 Se=2.2(g/kg) $y=a+b\sqrt{x}$ R=0.0450 Se=2.2(g/kg) y=(a+bx)/x R=0.6465** Se=2.2(g/kg) 除 y=(a+bx)/x (R=0.6465)外,其余 3 种回归式均达不到显著相关。因此,土壤全 K 的化学测定值与航空测定值在小样本情况下未发现有可比性。

	全 K 实测值	速效 K 回归值		全 K 实测值	速效 K 回归值		全 K 实测值	速效 K 回归值
1	21.8	63	13	25.8	96	25	29.8	129
2	22.0	64	14	26.0	97	26	30.0	130
3	22.4	68	15	26.4	101	27	30.2	132
4	22.8	71	16	26.8	104	28	30.4	134
5	23.0	73	17	27.0	106	29	30.6	135
6	23.2	74	18	27.4	109	30	30.8	137
7	23.6	78	19	27.8	112	31	31.0	139
8	24.0	81	20	28.0	114	32	31.2	140
9	24.6	86	21	28.4	117			
10	24.8	87	22	28.8	120			
11	25.0	89	23	29.0	122			
12	25.4	92	24	29.4	125			

表 6 土壤全 K 与速效 K 回归值的关系 (单位:g/kg mg/kg)

3 结语

- 1. 在土壤粒级组成中,<0.05mm 粒级与<0.01mm 粒级之间呈极显著线性相关(r= 0.9568**, n=84),本文中<0.01mm 粒级颗粒平均约占<0.05mm 粒级颗粒的 80%。
 - 2. 土壤全 K 仅与<0.05mm 粒级颗粒呈极显著线性或曲线相关。
- 3. 土壤<0.05mm 粒级及<0.01mm 粒级与速效 K 之间均呈极显著线性相关 ,显著程度后者(r=0.7223 , r=67)大于前者 (r=0.6969 , r=43)。
- 4. 土壤缓效 K 与速效 K 之间呈极显著曲线相关 $(r=0.7420^{**}$, n=64) , 本文中速效 K 含量平均约占缓效 K 的 22% 。
- 5. 通过土壤全 K、<0.05mm 粒级、<0.01mm 粒级及与速效 K 之间的系统相关关系可组成综合算式,可用数学方法以全 K 计算速效 K 的含量,速效 K 约占全 K 的 0.37%。
- 6. 在小样本情况下,土壤全 K 的化学测定值与航空伽玛能谱遥感测定值之间线性相关不显著,仅 y=(a+bx)/x 回归达极显曲级相关 (r=0.6465, n=35)。

参 考 文 献

- 1 常丽新, 等. 沈阳市农田土壤的供 K 能力. 沈阳农业大学学报, 1992, 23(2):103~107
- 2 杨振明, 闫飞, 韩丽梅等. 我国主要土壤不同粒级的矿物组成及供钾特点, 土壤通报, 1999, 30(4): 163~167
- 3 张伯泉, 黄文郁. 土壤基本性质与土壤肥力. 辽宁土壤, 沈阳: 辽宁省科技出版社, 1992, 634