# 有机物料对土壤有机磷组分及其矿化进程的影响

赵晶晶 1,2, 郭 颖 1,3, 陈 欣 1, 史 奕 1, 韩晓日 2

(1 中国科学院沈阳应用生态研究所陆地生态过程重点实验室,沈阳 110016; 2 沈阳农业大学 土地与环境学院,沈阳 110161; 3 中国科学院研究生院,北京 100049)

摘 要: 通过300 天室内恒温(30℃)好气培养实验,研究了不同 C/N 有机物料(水稻秸秆、玉米秸秆、牛粪、猪粪)掺入土壤后,土壤有机 P 及各组分含量和有机 P 的矿化特征。结果表明:有机物料的添加,不同程度地增加了土壤有机 P 含量;添加有机物料处理,有机 P 矿化率高于对照处理,且在培养的前30 天迅速矿化。掺入有机物料处理土壤有机 P 各组分含量均有所增加;对照处理有机 P 各组分的矿化进程都比较平稳,而添加物料处理的活性和中等活性有机 P 则呈增加或波动状态,中稳和高稳性有机 P 在腐解初期出现迅速矿化。有机物料的添加,可以促进有机 P 各组分间的转化,提高土壤 P 素的有效性。

关键词: 有机物料; 有机磷组分; 矿化进程

中图分类号: S153.6<sup>+</sup>2

P 是植物生长所需的大量元素之一。然而, P 肥 的当季 P 利用率一般只有 10% ~ 25%。土壤有机 P 约占全 P 的 20% ~ 50%<sup>[1]</sup>, 土壤有机 P 中, 小部分 有机 P 可以直接被植物吸收利用,大部分有机 P 需 经矿化作用转化成无机 P 供作物吸收利用。也有研 究认为有机 P 与有效 P 之间存在极显著正相关,且 各种形态的有机 P 是可以相互转化的<sup>[2]</sup>。自 1978 年 Bowman 和 Cole<sup>[3]</sup> 提出土壤有机 P 分组方法以来, 人们对土壤有机 P 的分组、转化和生物有效性等进 行了大量的研究。有机物料是改善土壤物理、化学 和生物环境条件的重要物质, 也是土壤有机 P 的直 接供应者。近年来不当的处置方法,比如大量的秸 秆焚烧、畜禽粪便的任意堆积和排放,使有机物料 对生态环境造成了负担。施用有机肥料或作物秸秆 还田不但可以缓解 P 肥不足的现状,还可以解决农 业废弃物污染问题, 因此深入研究有机物料对土壤 有机 P 组分及其矿化进程的影响,对于有机 P 资源 的合理利用,提高土壤供 P 能力具有重要意义。

## 1 材料与方法

#### 1.1 供试材料

供试土壤采自沈阳生态试验站(41°31′N,123°23′E),地处松辽平原南部的中心地带,位于沈

阳南郊苏家屯区十里河镇,平均海拔 31 m,年平均 气温  $7 \sim 8 \, ^{\circ}$ ,年降雨量为 700 mm,无霜期为 147  $\sim$  164 天。土壤为潮棕壤,土壤样品采自无 N 处理,0  $\sim$  20 cm 土层,将采集的新鲜土样去草皮、草根放在大塑料布上混匀,过 2 mm 筛后放入  $30 \, ^{\circ}$  的恒温室中预培养,待用。

试验选取 4 种不同 C/N 和 C/P 的有机物料: 玉 米秸秆、水稻秸秆、猪粪、牛粪,于 60℃ 烘干, 粉碎过 20 目筛。供试有机物料采自中国科学院沈 阳农业生态实验站。土壤及有机物料的养分特性见 表 1。

#### 1.2 试验方法

采用实验室模拟堆腐试验,将有机物料以干土重 4%的比例掺土腐解,并设纯土培养作为对照。将土和有机物料混匀后装入棕色试剂瓶中,加水至不同有机物料最大持水量的 60%,用 PARAPILM "M"封口,置于恒温培养箱中培养,温度控制在 30℃±1℃。分别于培养后的第 30、90、180、300 天取样测定有机物料中全 P(Pt)、有机 P(Po)及各有机 P组分的含量。共设 5 个处理:① 200 g 土 (CK);② 200 g 土 + 玉米秸杆;③ 200 g 土 + 水稻秸杆;④ 200 g 土 + 猪粪;⑤ 200 g 土 + 牛粪。以上处理均做 4 次重复。

①基金项目: 国家自然科学基金重大项目(30470336)资助。

<sup>\*</sup> 通讯作者 (chenxin@iae.ac.cn)

作者简介: 赵晶晶 (1981—), 女, 辽宁盘锦人, 硕士研究生, 主要从事养分资源再利用方面的研究。E-mail: helen8935@126.com

| 表 1 供试 | 十壤及有株 | 小物料的: | <b>养分特性</b> |
|--------|-------|-------|-------------|
|--------|-------|-------|-------------|

|  |  | organic materials |
|--|--|-------------------|
|  |  |                   |
|  |  |                   |

| 物料种类 | 全 P    | 有机 P    | 有机 C   | 有机 N   | Po/Pt | C/P  | N/P  | C/N  |
|------|--------|---------|--------|--------|-------|------|------|------|
|      | (g/kg) | (mg/kg) | (g/kg) | (g/kg) | (%)   |      |      |      |
| 供试土壤 | 0.34   | 166     | 10.0   | 0.86   | 48.8  | 29.4 | 2.53 | 11.6 |
| 玉米秸秆 | 1.04   | 567     | 423    | 8.44   | 54.9  | 409  | 8.12 | 50.2 |
| 水稻秸秆 | 1.53   | 796     | 382    | 7.84   | 51.9  | 249  | 5.12 | 48.7 |
| 牛粪   | 3.76   | 1614    | 402    | 13.91  | 42.8  | 107  | 3.70 | 28.9 |
| 猪粪   | 6.04   | 761     | 386    | 12.63  | 12.6  | 63.9 | 2.09 | 30.6 |

#### 1.3 分析项目及测定方法

全 P 采用高氯酸-硫酸联合消煮、钼锑抗比色法  $^{[4]}$ 测定。有机 P 采用灼烧法测定。有机 P 分级采用 Bowman-Cole 法 $^{[3]}$ 。

#### 2 结果与讨论

#### 2.1 有机物料对土壤有机 P 矿化进程的影响

在未施用有机物料条件下,土壤有机 P 的残留率变化不大(图1)。在培养的第30、90、180、300天,土壤有机 P 的残留率分别为96%、99%、92%、97%,说明在这种条件下,土壤有机 P 和无机 P 的相互转化处于相对平衡中。有机物料施入土壤后,在土壤微生物作用下,发生一系列复杂的生物化学转化过程,总的反应方向是有机物料的矿化。有机物料施入土壤后其中的含 P 有机物发生矿化,使有机态 P 转化为无机态 P。与此同时,也发生着土壤无机态 P 向有机态 P 的转化过程,土壤微生物从土壤中吸收无机态 P 合成自身所需有机 P。有机物料施入土壤后有机 P 呈现明显的波动,在前30天迅速矿化,出现一个低谷,这是由于有机物料刚施入土

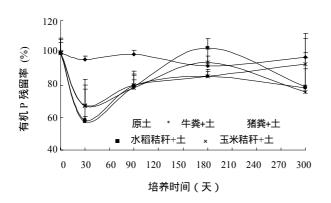



图 1 掺入有机物料后土壤有机 P 的分解残留率

Fig. 1 Residual rates of Po in soils after organic materials mixed

壤,其中有机 P 矿化起主导作用;而后有机 P 的合成多于其矿化,表现为有机 P 的净固持,在培养的第 180 天出现峰值后略有下降(图 1 )。总的来说,施入有机物料的处理有机 P 的残留率都低于对照处理,可见有机物料的施入可以促进土壤有机 P 的矿化。

如图 2 所示,除在迅速矿化阶段个别处理有机 P 含量低于对照外,其他阶段添加有机物料的处理 有机 P 含量都明显高于对照,可见有机物料的施入可以不同程度地增加土壤有机 P 含量。这与前人的研究结果相一致<sup>[5]</sup>。从有机 P 含量增加的程度看,添加猪粪和牛粪的作用明显高于添加水稻和玉米秸秆,因为粪肥类有机物料本身有机 P 含量较高,且其中含有大量的微生物,施入土壤后土壤微生物大量繁殖,促进了土壤中无机 P 向有机 P 的转化,本结果与周广业等<sup>[6]</sup>的研究一致。结合图 1,可以发现有机物料的添加不但可以增加土壤有机 P 含量,还可以促进土壤有机 P 矿化,有利于提高土壤 P 素的有效性。

## 2.2 有机物料对土壤有机 P 组分的影响

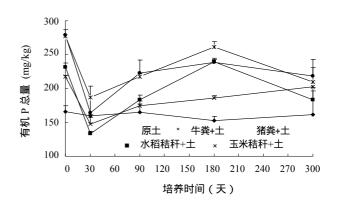



图 2 掺入有机物料后土壤有机 P 的含量

Fig. 2 Concentrations of Po in soils after organic materials mixed

+ 2.2.1 有机物料对土壤活性有机 P 的影响 壤活性有机 P 主要是核酸、磷酯类、磷糖类化合物, 它们在土壤中矿化分解很快,能够作为植物生长的 一种有效 P 源。有机物料的施入均可以增加土壤活 性有机 P 含量(图3), 尤以施入牛粪处理作用最为 显著,这与牛粪本身有机 P 含量很高有关;其他处 理之间差异不大,这与前人不同来源的 P 对活性有 机 P 的影响差异很小的报道类似<sup>[7]</sup>。培养结束时, 添加有机物料处理较原土处理活性有机 P 含量提高 了 0.2%~20.5%(平均 10.8%)。原土处理活性有机 P 含量逐渐降低,矿化平缓。其他处理活性有机 P 含量的变化与对照处理基本相同,只有添加牛粪的 处理活性有机 P 含量在培养的第 90 天后迅速增加, 第 180 天达到对照处理的 2.94 倍, 这可能是牛粪中 其他形态的有机 P 转化为活性有机 P 的缘故。

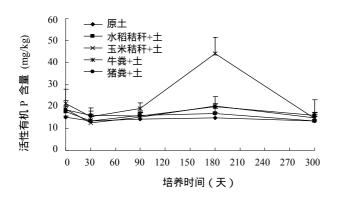



图 3 掺入有机物料后土壤活性有机 P 的矿化进程

Fig. 3 Mineralization processes of active Po in soils after organic materials mixed

2.2.2 有机物料对土壤中等活性有机 P 的影响 土壤中的中活性有机 P 主要是植酸钙、镁等化 合物,这些物质比较稳定,矿化速率不及活性有机 P 组分,但它也可部分提供植物生长所需 P 源。从 图 4 可以看出,添加有机物料处理中等活性有机 P 含量均高于对照处理,且添加粪肥类有机物料的处 理好于添加秸秆类有机物料处理。两种粪肥处理相 比较,在培养的前 30 天,添加牛粪处理中等活性有 机 P 含量高于添加猪粪处理。大概在 50 天以后,猪 粪处理中等活性有机 P 含量超过了牛粪处理。这与 牛粪处理的活性有机 P 含量在这一阶段明显增加相 吻合,亦验证了之前的推论,是因为中等活性有机 P 转化为活性有机 P,从而致使中等活性有机 P 含量明显降低。培养结束时,添加有机物料处理较原 土处理中等活性有机 P 含量提高了  $2.1\% \sim 42.8\%$  (平均 20.9%)。对照处理的中等活性有机 P 含量处于波动状态,略有增加。添加粪肥类有机物料的中等活性有机 P 在培养过程中呈先上升后下降的趋势,而添加秸秆处理则呈现明显的波动,这与两类物料的性质有关。

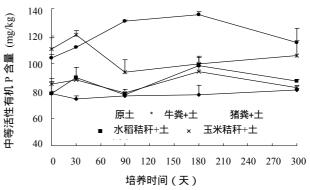



图 4 掺入有机物料后土壤中等活性有机 P 的矿化进程 Fig. 4 Mineralization processes of moderately-active Po in soils after organic materials mixed

2.2.3 有机物料对土壤中稳性有机 P 的影响除在培养的 30 天前后,其他时期添加有机物料处理的中稳性有机 P 含量均高于对照处理(图 5)。有研究表明,土壤中的活性有机 P 和中等活性有机 P 与植物生长有显著相关关系,而中稳性有机 P 成

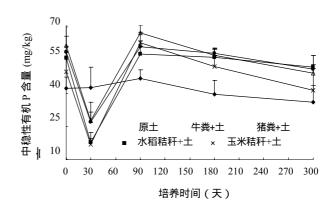
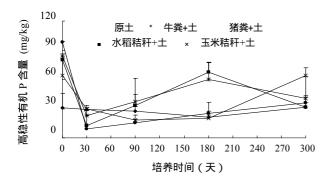




图 5 掺入有机物料后土壤中稳性有机 P 的矿化进程 Fig. 5 Mineralization processes of moderately-resistant Po in soils after organic materials mixed

分属于难矿化类,在培养的前 30 天中稳性有机 P 含量迅速降低,说明这期间中稳性有机 P 转化为土壤中的活性和中等活性有机 P,使活性较高的有机 P 含量保持平稳。至培养结束时,添加有机物料处理较原土处理中稳性有机 P 含量提高了 14.4%~43.7%(平均 33.3%)。对照处理的中稳性有机 P 含量处于波动状态,略有降低。而各添加有机物料处理的中稳性有机 P 含量随时间的变化趋势为先降低后上升至最高后缓慢下降,与土壤有机 P 总量的变化趋势相似。

2.2.4 有机物料对土壤高稳性有机 P 的影响 土 壤中的高稳性有机 P 主要是植酸铁、铝等化合物以 及一些含 P 的螯合物,这类物质极难被矿化,对植 物生长基本是无效的。因为物料本身含有一定数量 的高稳性有机 P, 所以在培养初期, 和其他有机 P 组分一样,高稳性有机 P 含量均高于对照处理。腐 解期间,对照处理的高稳性有机 P 含量变化很小, 而添加有机物料处理的高稳性有机 P 却不稳定,在 培养前期存在明显的降低过程,之后略有上升,个 别处理有所波动。至培养结束时,添加有机物料处 理高稳性有机 P 含量比原土处理的提高了 -0.3% ~ 104.7% (平均 37.2%)。 高稳性有机 P 含量在腐解的 前 30 天迅速降低,应该也是转化为其他形态有机 P 的缘故[8]。可见有机物料的添加不但可以增加土壤 有机 P 的含量, 还可以促进稳定性较高的有机 P 组 分向活性较高的有机 P 组分转化。



#### 图 6 掺入有机物料后土壤高稳性有机 P 的矿化进程

Fig. 6 Mineralization processes of highly-resistant Po in soils after organic materials mixed

# 3 结论

- (1) 有机物料的添加,不同程度地增加了土壤 有机 P 含量,有机 P 矿化率高于对照处理,且在培 养的前 30 天迅速矿化,以上性质均表现为粪肥类有 机物料优于秸秆类有机物料。
- (2) 有机物料的掺入能显著提高土壤中 4 种有机 P 组分的含量,主要增加了土壤中等活性有机 P 和中稳性有机 P,且粪肥类有机物料优于秸秆类有机物料。
- (3) 有机物料的掺入可以促进土壤有机 P 向活性较高的形态转化,有利于提高土壤 P 素的有效性。

#### 参考文献:

- [1] 鲁如坤. 土壤 植物营养学原理和施肥. 北京: 化学工业出版社, 1998: 162-164
- [2] 黄庆海, 赖涛, 吴强. 长期施肥对红壤性水稻土有机磷组分的影响. 植物营养与肥料学报, 2003, 9(1): 63-66
- [3] Bowman RA, Cole CV. An exploratory method for fractionation of organic phosphorus from grassland soil. Soil Sci., 1978, 125: 95-101
- [4] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技 出版社, 2000: 166-187
- [5] 徐阳春, 沈其荣, 茆泽圣. 长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响. 土壤学报, 2003, 40 (4): 593-598
- [6] 周广业, 严龙翔. 长期施用不同肥料对土壤磷素形态 转化的影响. 土壤学报, 1993, 30 (4): 443-446
- [7] Guggenberger G, Christensen BT, Rubaek GH. Isolation and characterization of labile organic phosphorus pools in soils from the Askov long-term field experiments. Journal of Plant Nutrition and Soil Science, 2000, 163 (2): 151-155
- [8] Reddy DD, Rao AS, Rupa TR. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic in vertisol. Bioresource Technology, 2000, 75 (2): 113-118

# Influences of Organic Materials on Organic Phosphorus Fractions and Mineralization Processes in Soils

ZHAO Jing-jing<sup>1,2</sup>, GUO Ying<sup>1,3</sup>, CHEN Xin<sup>1</sup>, SHI Yi<sup>1</sup>, HAN Xiao-ri<sup>2</sup>

(1 Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;

2 College of Land and Environment Sciences, Shenyang Agriculture University, Shenyang 110161, China;

3 Graduate School of the Chinese Academy of Sciences, Beijing 100049, China)

**Abstract:** Concentrations and mineralization processes of organic phosphorus (Po) fractions in soils mixed with different organic materials (straw of rice and maize, manure of cattle and pig) of different C/N were studied by aerobic incubation experiment at 30°C for 300 d. Results showed that soil Po contents increased at different degrees after organic materials were mixed; Po mineralization rates in treatments mixed with organic materials were higher than CK, and it mineralized quicker during the first 30 d of cultivation; The contents of organic phosphorus fractions in the treatments mixed with organic materials increased; Po fractions of CK mineralized smoothly, while active Po and moderately-active Po increased or fluctuated in treatments mixed with organic materials, moderately-resistant Po and highly-resistant Po mineralized quickly at initial stages of cultivation. Application of organic materials could promote transformation between different Po fractions, thus could improve phosphorus availability in soils.

Key words: Organic materials, Organic phosphorus fractions, Mineralization process