金属元素对 Xhhh 菌株表达 MnP 酶及降解污染物的影响^①

赵大勇¹, 于洪峰², 潘文扬¹, 孙石磊¹, 张徐祥¹,朱程军¹, 肖 琳¹, 崔益斌¹, 程树培^{1*}
(1 南京大学污染控制与资源化研究国家重点实验室,南京 210093;

2 中国矿业大学环境与测绘学院, 江苏徐州 221008)

摘 要:测定分析了制药废水中 Mn^{2+} 、 Cu^{2+} 、 Zn^{2+} 和 Se^{4+} 4 种金属元素离子水平对跨界原生质体融合 (IKPF) 特效菌株 Xhhh 表达锰过氧化物酶 (MnP) 水平及降解有机污染物效率的影响。结果表明,影响 MnP 表达水平的金属元素离子顺序为 Mn^{2+} Se^{4+} Zn^{2+} Cu^{2+} 。在 MnP 水平与生物比降解率(SDR)之间,存在极显著的正相关性(P<0.01)。研究结果为应用 IKPF-Xhhh 特效菌株处理制药废水的工艺设计提供了重要的分子生物学参数。本文还对 Xhhh 在土壤修复中的应用前景进行了分析讨论。

关键词: 制药废水: 金属元素: 生物降解: MnP: SDR: 土壤修复

中图分类号: X 172

盐酸丁螺环酮、依托咪酯和咪达唑仑是 3 种人类神经功能调节药物。在其生产废水中,存在四氢呋喃、甲苯和甲胺等持久性有机污染物 POPs(persistent organic pollutants)及环境内分泌干扰物 EEDs (environmental endocrine disruptors),难以被自然界的土著微生物快速降解,容易通过食物链富集于生物体内,对人类及动物产生系列毒性效应,直至诱发癌症和损伤生殖功能[1-2]。

为了有效地降解 POPs 和 EEDs 有毒有机污染物,建立高效的废水处理及生物修复技术,本研究针对药物生产废水中的四氢呋喃、甲苯和甲胺等有毒有机污染物,应用了跨界原生质体融合 (inter-kingdom protoplast fusion, IKPF) 技术,构建出了特效菌株 IKPF-Xhhh。有关 IKPF-Xhhh 构建与鉴定的研究结果,已另文报道^[3]。

本研究以 IKPF-Xhhh 为出发菌株,测定分析了制 药废水中金属离子 Mn²⁺、Cu²⁺、Zn²⁺和 Se⁴⁺对 Xhhh 表达锰过氧化物酶(MnP)水平及 Xhhh 降解制药废水效

率的影响。同时还讨论了 Xhhh 修复土壤污染的可能性。

1 材料方法

1.1 制药废水及水质测定结果

废水样品采自 XZEH 合成制药废水处理系统。 COD_{cr} 、 BOD_5 、TN、TP 的测定方法参照文献[4]。金属元素的测定采用美国 Jarrell-Ash 的 ICP-J-A1100 直读光谱法。制药废水的水质分析结果见表 1。

1.2 金属元素对 IKPF-Xhhh 菌株 MnP 表达试验

4种金属元素对 IKPF-Xhhh 特效菌株 MnP 表达水 平影响的试验,根据正交原理共设 9 组 (表 2)。每种金属元素设 3 个水平,水平 1 为设计的金属元素最高浓度;水平 2 是国家污水综合排放三级标准 [GB9878-1996] 中规定的允许排放浓度 [$^{[5]}$; 水平 3 是废水中自然存在的金属元素浓度。4 种金属元素的离子化合物分 别 为: Mn(MnSO $_4$ ·H $_2$ O)、 Cu(CuSO $_4$ · 5 H $_2$ O)、 Zn(ZnSO $_4$ · 7 H $_2$ O) 和 Se(Na $_2$ SeO $_3$),均为分析纯。

表 1 XZEH 合成制药废水的水质测定结果 (mg/L)

Table 1	Quality of wastewater	from the XZEH	production
---------	-----------------------	---------------	------------

参数	数值	参数	数值	参数	数值	参数	数值	参数	数值
COD_{cr}	13220	TP	9.00	Ca	10.6	Mg	19.20	Se	< 0.05
BOD ₅	920	Al	357	Cd	< 0.002	Mn	0.45	Sr	0.045
pН	6.5 ~ 8	Ba	< 0.001	Cu	< 0.002	Na	1010	Ti	0.03
TN	1311	Be	<0.001	K	652	Pb	< 0.03	Zn	2.10

①基金项目: 国家教育部博士点基金项目(20030284038)、国家 863 项目(2001AA214191)资助。

^{*} 通讯作者 (chengsp@nju.edu.cn)

金属 _ 元素					试验分组				
	1	2	3	4	5	6	7	8	9
Mn ²⁺	10	10	10	5	5	5	0.09	0.09	0.09
Cu ²⁺	5	2	< 0.002	5	2	< 0.002	5	2	< 0.002
Zn ²⁺	10	5	0.42	5	0.42	10	0.42	10	5
Se ⁴⁺	1	0.5	<0.05	<0.05	5	0.5	0.5	<0.05	1

表 2 4 种金属元素对 Xhhh 表达 MnP 水平影响的相关参数试验及分组 (mg/L)
Table 2 Designing of the test on effects of 4 metals on MnP expression of Xhhh-strain

测定 Xhhh 表达 MnP 水平的废水反应液总体积为 150 ml,30°C于 120 r/min 振荡反应 6~24 h。每次取样 20 ml,3000 r/min 离心 20 min,取上清液测定其中锰过氧化物酶的比活力 (MnP-SA) 水平和 COD_{cr} 浓度。测定 MnP-SA 水平的分光光度法条件是:温度 30° C、波长 $A_{469\,nm}$ 、5 min 内测定 OD 的变化值,以 0.1 Δ OD/min 表示 MnP 的 1 个活性单位(1U)。1L 废水中所含有的 MnP 活性单位 U 的数量即比活力水平,也即 MnP-SA (U/L)[6]。离心沉淀物的测定值即为 IKPF-Xhhh 的生物量。

1.3 出发菌株和培养基

Xhhh 是本研究的出发菌株,整合利用了3个亲株的基因资源,因而兼具了3个亲株的高降解性、高适应性、高絮凝性的三高特征^[7-9]。其亲株1黄孢原毛平革真菌 PC (*Phanerochaete chrysosporium*) 由南京农业大学提供;亲株2酿酒酵母真菌 SC (*Saccharomyces cerevisiae*)为东莞糖厂产品;亲株3 土著菌 XZ (*Bacillus*)分离自制药废水的现场处理系统。培养基为真菌和细菌普通培养基的综合配方 ^[7]。

2 结果与讨论

2.1 金属元素对 IKPF-Xhhh 表达 MnP 影响的测定 结果

4 种金属元素对 Xhhh 的比增长率 (SGR)、比降解率 (SDR) 和酶比活力(MnP-SA) 影响的测定结果见表 3。表 3 中的微生物比增长率 SGR (specific growth rate),是表示微生物繁殖生长性能的动力学参数。计算 SGR 的公式是: SGR (/d) = $(\ln X_e - \ln X_0)$ /t, 式中, X_0 为反应前生物量(mg/L), X_e 为反应后生物量 (mg/L), t 为反应时间 (d)^[10]。微生物对污染物的比降解率 SDR (specific degradation rate),在废水生物处理系统中又称为生物负荷率 SLR (sludge loading rate),是表示微生物降解污染物性能的动力学参数。本研究中 SDR 的计算公式是: SDR (/d) = $\mu(S_0 - S_e)/[X_0(e^{\mu t} - 1)]$,式中, S_0 为反

应前的污染物 COD_{cr} 浓度 (mg/L), S_e 为反应后的污染物 COD_{cr} 浓度 (mg/L), μ 为 SGR 的值, X_0 同于计算比增长率 (SGR) 的公式^[10]。

表 3 4 种金属元素对 Xhhh 表达 MnP 水平及降解 动力学参数影响的测定结果

Table 3 Effects of the 4 metals on levels of MnP expression and degradation kinetic parameters of Xhhh

组号	MnP-SA(U/L)	SGR(/d)	SDR(/d)
1	1227 ± 51.15	0.169	0.373
2	1257 ± 74.95	0.209	0.347
3	1293 ± 42.56	0.211	0.385
4	1190 ± 33.53	0.180	0.390
5	1029 ± 46.30	0.178	0.308
6	827 ± 73.64	0.203	0.295
7	469 ± 36.56	0.188	0.244
8	895 ± 20.76	0.202	0.266
9	935 ± 15.03	0.157	0.239

表 3 中的每个 MnP-SA 数据是 6 个平行样品的均值,SGR 和 SDR 的值是 3 个平行样品的均值。结果表明: MnP-SA 与 SDR 之间存在极显著的正相关性 (P < 0.01); 比降解负荷率 SDR (Y) 与 MnP-SA (X) 的数学关系是: Y = 0.0002X + 0.1174。显而易见,随着 Xhhh 表达 MnP-SA 水平的提高,SDR 随之上升,降解废水的性能得以提高。

4 种金属影响 Xhhh 表达 MnP-SA 水平的级差值 顺序为 Mn^{2+} (492.6 U/L)> Se⁴⁺ (275.3 U/L)> Zn²⁺ (196.8 U/L)> Cu²⁺ (97.94 U/L),4 种金属的优化浓度依次分别为: 10、< 0.05、5 和 2mg/L(表 4)。

从表 4 可以看出, 4 种金属离子处于优化浓度水平时表达的 MnP-SA 为 1143 U/L, 高于其他各组; 对制药废水有机污染物的比降解率 SDR 为 0.337 /d, 也高于其他各组。

10 mg/L 的 Mn²⁺ 是表达 MnP-SA 水平的最佳浓度,该结果与 Urek^[11]的报道_一致。MnP 在催化污染物

7X 4	4 件並属儿系对 Annn 农区 Minr 及 SDR 注化多数刀切(mg/L)
Table 4	Effect of the 4 metals on MnP expression and SDR parameters of Xhhh

浓度组合类型		金属	MnP-SA	SDR		
	Mn ²⁺	Cu ²⁺	Zn ²⁺	Se ⁴⁺	(U/L)	(/d)
优化浓度	10	2	5	< 0.05	1143	0.337
自然浓度	0.09	< 0.002	0.42	< 0.05	957	0.222
推荐浓度	5	2	5	< 0.05	1082	0.328
国家三级排放标准允许浓度	5	2	5	0.5	1013	0.315

降解的过程中,需要足够的 Mn^{2+} 作为电子供体 $^{[11-12]}$ 。 Pointing $^{[13]}$ 报道 Cu^{2+} 6.35 mg/L 和 Zn^{2+} 6.55 mg/L 时,可以抑制 MnP 表达,与本研究结果相近。

但是, 当 4 种金属离子均处于优化浓度时, 其中的 Mn²⁺ 为 10 mg/L, 超过了国家三级排放标准规定的允许浓度 5 mg/L [GB8978-1996]。所以在实际应用中,可以采用表 4 中的"推荐浓度",即 Mn²⁺ 调节为 5 mg/L, 其他 3 种金属离子浓度仍选用 "优化浓度"。

另外,从表 4 还可以看出,制药废水中自然存在的 Mn^{2+} 、 Cu^{2+} 、 Zn^{2+} 3 种金属离子浓度,均低于"推荐浓度",当调节至推荐浓度时,MnP-SA 水平可提高 13.06%,SDR 水平可提高 47.75%。

2.2 IKPF-Xhhh 特效菌株与土著亲株 XZ 的性能比较

表 5 列出了应用原创的废水处理信息软件 Ebis4 ^[14],对"推荐浓度"制药废水中特效菌株 Xhhh 的性能与原制药废水中土著亲株 XZ 的性能进行预测的比较分析结果,其中土著亲株 XZ 的工艺性能参数参用徐州恩华集团第三制药厂处理制药废水系统 2003 年全年实际运行的测试结果。废水水质的自然参数同于 Xhhh的研究系统。

从表 5 可以看出,在 600 m³/d 制药废水的处理系统中,当处理出水 COD_{cr}浓度达到国家一级排放标准时,IKPF-Xhhh 特效菌株及其土著亲株 XZ 的主要区别为: ①降解率 SDR 即生物负荷率 SLR: 特效菌株 IKPF-Xhhh 是土著菌 XZ 的 335%; ②容积负荷率 VLR: 特效菌株 IKPF-Xhhh 是土著菌 XZ 的 324%; ③所需的曝气池体积: 特效菌株 IKPF-Xhhh 仅是土著菌 XZ 的 37.49%。

可以清楚地看出,IKPF-Xhhh 特效菌株的比降解率和容积负荷率均是土著菌 XZ 的 3 倍以上; IKPF-Xhhh 特效菌株所需的曝气池体积约是土著菌 XZ 的 1/3。由此预测,应用 IKPF-Xhhh 特效菌株并调节 4 种金属元素的水平,可以提高处理效率,节约处理废水的运行费用,降低曝气池的建设投资。

表 5 中的进水 COD_{cr}浓度为 1.900 kg/m³ = 1900

表 5 Xhhh 及亲株 XZ 处理制药废水性能的预测
Table 5 Predication of capabilities of Strain Xhhh and
its parent strain XZ of treating wastewater

序号	工艺参数	XZ 土著	Xhhh
1	进水 Q _o (m³/d)	600	600
2	进水 COD _{cr} ,S _o (kg/m³)	1.900	1.900
3	出水 COD _{cr} ,S _e (kg/m³)	0.100	0.100
4	出水 SS,X。(kg/m³)	0.070	0.070
5	污泥停留时间 θ _c (d)	18.660	5.240
6	水力停留时间 HRT (d)	3.551	1.298
7	污泥浓度 X(kg/m³)	3.061	2.958
8	回流污泥浓度 X _r (kg/m³)	6.036	7.407
9	污泥比增长率 SGR (/d)	0.054	0.191
10	容积负荷率 VLR (kg/(m³·d))	0.299	0.970
11	生物负荷率 SLR=SDR (/d)	0.098	0.328
12	曝气池所需体积 V(m³)	2131	779

mg/L, IKPF-Xhhh 特效菌株对废水 COD_{cr} 的生物负荷率 (SLR) 即生物比降解率 (SDR) 为 0.328 /d, 即单位生物量每天降解的污染物的总量是生物量的 32.8%。

2.3 IKPF-Xhhh 特效菌株用于土壤污染修复的前景

应用微生物菌剂修复 POPs 和 EEDs 污染的土壤或水体,一般从特效菌株的选用和提供特效菌株所需的条件 2 个方面进行^[15-16]。在证实 IKPF-Xhhh 特效菌株具有降解废水中四氢呋喃、甲苯和甲胺特效性能的前提下,可以推论只要条件理想,IKPF-Xhhh 特效菌剂则有可能有效地用于四氢呋喃、甲苯和甲胺的土壤污染修复。据报道^[17,20],不同地区土壤中存在的Mn、Cu、Se、Zn 4 种金属元素浓度水平如下:①Mn元素:浙江、内蒙古、山西土壤中的浓度范围为 540~22 mg/kg;②Cu元素:全世界土壤中的平均浓度为 20 mg/kg;③Se 元素:中国土壤中的平均浓度为 0.29 mg/kg;④Zn 元素:中国土壤中的平均浓度为 69 mg/kg。

上述表明,中国土壤中存在的 Mn、Cu、Se、Zn 4 种金属元素的浓度水平均高于本研究获得的推荐浓

度,有可能满足 IKPF-Xhhh 特效菌株高效表达 MnP 所需的金属元素条件。由于土壤污染的环境生态因素 极为复杂,所以确证 Xhhh 修复污染土壤的性能有待进 一步试验研究。

本研究中应用的 4 种金属元素的浓度,是否会引发出现 Mn、Cu、Se、Zn 的二次环境污染,是个引人关注的问题。下面逐一进行分析:

- (1) 我国无公害干果产地土壤重(类)金属推荐限量指标,主要涉及总 Hg、总 As、总 Ab、总 Cd、总 Cr^[21],本研究中不涉及该 5 种重金属。
- (2) 土壤肥料中,主要关注的是重金属 As、Hg、Cd、Pb 的污染指标^[22],本研究中不涉及该土壤肥料中的 4 种金属。
- (3) 蔬菜对土壤重金属吸收主要涉及 Pb、Cu、Cd 和 Zn 的超标率^[23],本研究中涉及的 Cu 仅为世界土壤中平均浓度的 1/10, Zn 仅为中国土壤中平均浓度的 1/14。
- (4) 城市不同功能区土壤重金属分布^[24]、高通量公路沿线土壤转运金属污染^[25]、城市土壤中金属浓度等研究表明^[26],对金属污染的研究已深入到城市,因为金属污染威胁到人体健康。
- (5) 金属对植物生长毒性^[27]、对降解农药微生物影响^[28]、以及碘甲磺隆钠盐对土壤微生物过氧化氢酶影响等研究表明^[29],金属污染的生态效应及生态毒性,关系到土壤功能和食物链清洁。

本研究中涉及到 Mn、Cu、Se 和 Zn 的添加和调控,但是该 4 种金属元素的应用浓度,远远低于世界及中国土壤中的平均浓度,并且已控制在中国国家允许的排放标准 [GB8978-1996] 的范围内。

3 结语

影响 IKPF-Xhhh 特效菌株表达 MnP-SA 水平高低的 4 种金属元素排序为: $Mn^{2+} > Se^{4+} > Zn^{2+} > Cu^{2+}$; 锰过氧化物酶比活力水平与比降解率之间有极显著正相关性 (P < 0.01),其数学关系模型是 Y = 0.0002X + 0.1174,(Y 为 SDR 值,X 为 MnP-SA 值)。

推荐 IKPF-Xhhh 特效菌株使用的 Mn^{2+} 、 Cu^{2+} 、 Zn^{2+} 、 Se^{4+} 浓度分别为 5、2、5、 $<0.05\,mg/L$ 。在降解制药废水过程中,Xhhh 特效菌株的 SDR 是土著菌 XZ的 3.35 倍,VLR 是土著菌 XZ的 3.24 倍,所需曝气池体积是土著菌 XZ的 37%。

我国土壤中 Mn、Cu、Se、Zn 金属元素的浓度水平均高于本研究获得的推荐浓度,有可能满足 Xhhh

高效表达 MnP 所需的金属元素条件。Xhhh 有效地用于土壤污染修复有待进一步试验研究。

参考文献:

- [1] 程树培,于洪峰,孙石磊.制药废水生物处理技术的有效性. 环境科学,2004,25(9):112-115
- [2] 傅慰祖. 有机溶剂四氢呋喃的毒性及其危害. 职业卫生与应急 救援, 1996, 14 (2): 22-23
- [3] 程树培. 两真菌与一细菌原生质体融合的特效菌株及其构建 方法. 国家知识产权实施信息, 2003, (3): 45
- [4] APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington DC.: American Public Health Association, 1992: 444-453
- [5] 国家环保总局. 污水综合排放标准 (GB9878-1996). 北京, 中国标准出版局, 1996
- [6] Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A. Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of *Phanerochaete* chrysosporium ME-446. Enzyme and Microbial Technology, 2004, 34: 187-195
- [7] 沈萍, 范秀容, 李广武. 微生物学实验. 北京: 高等教育出版 社,2001,214-222
- [8] Martinez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology, 2002, 30(4): 425-444
- [9] Xu FJ, Chen HZ, Li ZH. Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresource Technology, 2001, 80: 149-151
- [10] 李小明, 陈坚, 伦世仪. 含对苯二甲酸有机废水厌氧降解动力 学. 中国环境科学, 2000, 20 (1): 27-30
- [11] Ürek RÖ, Pazarlioglu NK. Production and stimulation of manganese peroxidase by immobilized *Phanerochaete chrysos*porium. Process Biochemistry, 2005, 40: 83-87
- [12] 胡明, 卢雪梅, 高培基. 锰过氧化物酶的结构与功能. 中国生物工程杂志, 2003, 23 (3): 30-34
- [13] Pointing SB, Bucher VVC, Vrijmoed LLP. Dye decolorization by sub-tropical basidiomycetous fungi and the effect of metals on decolorizing ability. World Journal of Microbiology & Biotechnology, 2000, 16: 199-205
- [14] 程树培. NJU-Ebis4 废水处理工艺调试软件, 软著 [009244] [V1.0]. 国家知识产权局, 2003,
- [15] Potin O, Catherine R, Etienne V. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. International Bodeterioration and Bodegradation. 2004, 54: 45-52
- [16] Amezcua-Allieri MA, Lead JR, Rodríguez-Vázquez R. Impact of

- microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere, 2005, 61: 484-491
- [17] 张晓平,张玉霞.西藏土壤中硒的含量及分布.土壤学报, 2000,37(4):558-562
- [18] 马立锋, 石元值, 韩文炎. 浙江省茶园土壤锰含量状况研究. 土壤通报, 2004, 35 (2): 203-206
- [19] 段永蕙, 张乃明. 山西土壤锰含量及影响因素研究. 土壤通报, 2003, 34(4). 337-339
- [20] 张晓平, 张玉霞, 王晶. 西藏土壤中铜含量及分布. 应用生态 学报, 2001, 12 (6): 958-960
- [21] 张建光, 刘玉芳, 郭素萍, 李保国, 周俊义, 王文江. 我国无公 害干果产地土壤重 (类) 金属限量标准研究. 土壤学报, 2005, 42 (11): 153-155
- [22] 陈芳,董元华,安琼,钦绳武.长期肥料定位试验条件下土壤中重金属的含量变化.土壤,2005,37(3):308-311
- [23] 薛艳、沈振国、周东美、蔬菜对土壤重金属吸收的差异与机理、

- 土壤, 2005, 37 (1): 32-36
- [24] 吳新民, 潘根兴. 城市不同功能区土壤重金属分布初探. 土壤 学报, 2005, 142 (13): 513-517
- [25] Kocher B, Wessolek G, Stoffregen H. Water and heavy metal transport in roadside soils. Pedosphere, 2005, 15 (6): 746-753
- [26] Zhang MK, Ke ZX. Heavy metals, phosphorus and some other elements in urban soils of Hangzhou City, China. Pedosphere 2004, 14 (2): 177-185
- [27] Si YB, Zhou J, Zhou DM, Chen HM. Soil manganese and iron released due to calcium salts: Bioavailability to pepper (*Capsicum frutescens* L.). Pedosphere, 2004, 14 (1): 111-116
- [28] 刘智, 张晓舟, 何健, 林少文, 潘结友, 李顺鹏. 营养物质及金属离子对 DLL2E4 菌降解对硝基苯酚的影响. 土壤学报, 2004, 41(12): 292-297
- [29] 唐美珍, 郭正元, 袁敏, 徐珍. 碘甲磺隆钠盐对土壤中过氧化 氢酶活性及呼吸作用的影响. 土壤, 2005, 37 (4); 421-425

Effects of Metals on MnP Expression and Wastewater Degradation Efficiency of Xhhh Strain

ZHAO Da-yong¹, YU Hong-feng², PAN Wen-yang¹, SUN Shi-lei¹, ZHANG Xu-xiang¹, ZHU Cheng-jun¹, XIAO Lin¹, CUI Yi-bin¹, CHENG Shu-pei¹

(1 State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093, China; 2 School of Environment and Survey, Mining University of China, Xuzhou, Jiangsu 221008, China)

Abstract: Effects of 4 metal ions, Mn^{2+} , Cu^{2+} , Zn^{2+} and Se^{4+} , were determined on level of manganese peroxidase (MnP) expression and degradation efficiency of Strain Xhhh, an inter-kingdom protoplast fusant (IKPF) was constructed for degrading organic pollutants in wastewater from a pharmaceutical plant. Results showed that in terms of specific activity (MnP-SA) level, the four metals were in the order of $Mn^{2+} > Se^{4+} > Zn^{2+} > Cu^{2+}$. A significantly positive correlation (P<0.01) was observed between the MnP-SA level and the specific degradation rate (SDR). The findings provided some important molecular biological parameters that were useful in designing wastewater treatment technology using the IKPF-Xhhh strain. The prospect of application of Strain Xhhh to soil bioremediation was also discussed.

Key words: Pharmaceutical wastewater, Metals, Biodegradation, MnP, SDR, Soil bioremediation