PRB 修复垃圾渗滤液污染地下水过程中 NH_4^+ 的变化规律^①

崔海炜, 孙继朝*, 黄冠星, 荆继红, 张媛静, 王金翠, 张 英

(中国地质科学院水文地质环境地质研究所,石家庄 050061)

摘 要: 实验模拟地下水修复,以被垃圾渗滤液污染地下水为研究对象,分别用沸石、无烟煤、陶粒、活性炭、炉渣、 钢渣、粉煤灰、零价铁作为填充材料,设计6种可渗透反应墙(PRB),分别为反应器1、2、3、4、5和6。分3个试验阶段对 PRB 技术修复污染地下水中 NH4⁺变化规律进行实验模拟研究,分析了反应器 NH4⁺变化原因并探讨了 NH4⁺变化机理。实验结 果表明: NH4⁺去除率普遍较低,含沸石反应器脱氮效果最好,也仅为49.8%,部分反应器甚至出现负值;水解酸化作用,产生 一定量 NH4⁺和有机酸,造成反应器出水 pH 值降低和填充材料 NH4⁺相对去除率偏低。PRB 技术治理渗滤液污染地下水具有一 定可行性,但技术有待继续深入研究。

关键词: 可渗透反应墙 (PRB); 垃圾渗滤液; 地下水; NH₄⁺ 中图分类号: S625.5⁺4

垃圾渗滤液是垃圾在堆放和填埋过程中,由于发 酵和雨水淋浴、冲刷以及地表水和地下水浸泡而滤出 的污水,是垃圾处理过程产生的二次污染。垃圾渗滤 液通过包气带渗入到地下含水层,使地下水丧失利用 价值,已成为一个不可忽视的环境污染问题。可渗透 反应墙(PRB)技术是近年来迅速发展的一种地下水 污染原位修复技术,是一个填充有活性反应介质的被 动反应区,其中含有降解各种污染物的氧化还原剂、 螯合剂、络合剂、吸附剂、沉淀剂或微生物,当污染 地下水通过时,各种污染物可以被还原、吸附、沉淀 或生物降解,达到治理污染组分的目的^[1-9]。

本文采用多种混合介质,铁粉、活性炭、沸石、 陶粒、钢渣、无烟煤、炉渣、粉煤灰,研究反应器内 各种复合填充材料对地下水 NH₄⁺ 去除能力,分析 NH₄⁺ 在填充材料中的变化规律,并初步探讨 NH₄⁺ 的 变化机理。

1 实验部分

1.1 实验方法

本次试验在参考大量国内外相关文献的基础上, 结合石家庄某垃圾场污染现状(表1)和 PRB 技术特 点,根据垃圾渗滤液中污染组分的性质和常用 PRB 活 性介质的优缺点,筛选出适合处理垃圾渗滤液中污染 物的几种介质,将其按照一定比例混合均匀配制成 PRB 填充材料装入反应器中,将采集的垃圾渗滤液经 过稀释配成待处理水样以模拟受污染地下水,运用正 交试验方法设计并运行 PRB 反应器,观察各反应器的 处理结果。通过分析反应器出水水质,并对正交试验 结果进行直观法分析,判断进水污染物浓度和反应时 间不变的情况下,处理效果最优的 PRB 介质配比,并 分析各因素对 PRB 处理 NH₄⁺ 效果的影响,确定该方 法防治垃圾渗滤液污染地下水的可行性。

1.2 实验材料及仪器

本实验采用市场供售的铁粉、活性炭、沸石、陶 粒、钢渣、无烟煤、炉渣、粉煤灰等多种混合介质, 并根据实验需要进行适当加工处理。为了保持高透水 性,PRB 中还加入了中粗砂,以增加其孔隙率以及为 微生物及 PRB 中的各种反应提供附着体。

主要仪器: UV-2102C/PC/PCS 型分光光度计,电 子天平(上海,BS110S),便携式现场测试箱(德国, Multi340i/SET),摇摆式(三维)混合机(常州,SYH-1)。 1.3 实验样品

为保证实验的有效性,在集水池及下游监测井和 附近农灌井取样,水质检测结果见表 1。根据检测结 果,并考虑到垃圾渗滤液在渗入到含水层过程中,经 过包气带的淋滤,污染程度有所降低,同时也考虑到 污染因子在地下水中的衰减过程及实验的实际意义, 将渗滤液用自来水稀释 50 倍用于实验,模拟受渗滤液

①基金项目:中国地质科学院水文地质环境地质研究所基本科研业务费专项(SK200902)资助。

^{*} 通讯作者 (pangzi_cui@163.com)

作者简介: 崔海炜(1978-), 男,河北石家庄人,硕士,工程师,研究方向为地下水污染修复与污水资源化。E-mail: cuihaiwei@eyou.com

污染地下水(表1)。实验用原水取自石家庄市某大型 垃圾填埋场渗滤液集水池,用取自中国地质科学院水 文地质环境地质研究所正定大院自备井的地下水进行 稀释。

表1	渗滤液及相关地下水主要水质指标(mg/L)
Table 1	Quality of landfill leachate and related groundwater

项目	COD	BOD	pН	$\mathrm{NH_4}^+$	总氮	总磷	Cl	Cr ⁶⁺	Cd	备注
渗滤液	2 859	361	8.17	1 146	1 920	31	5 916	1.2	3.3	集水池
监测井	37.64	6.31	7.69	22.84	27.29	0.53	114.16	0.01	0.08	距集水池 20 m
农灌井1	12.85	2.18	7.35	9.71	14.35	0.48	74.82	0.009	0.002	距集水池 100 m
农灌井2	5.75	1.59	7.27	0.74	1.16	0.03	8.42	0.004	0.002	距集水池 150 m
自备井	0.76	0.14	7.60	0.04	0.04	0.03	8.73	0.004	0.002	笔者单位大院
实验用水	45.50	7.04	8.07	22.04	36.24	0.58	118.31	0.02		模拟污染地下水

1.4 实验设置和分析方法

实验设置 6 种 PRB 处理,将不同 PRB 所需活性 材料在混合机充分混合后,装入反应器(表 2)。实 验反应器采用有机玻璃柱,内径 80 mm,长度 400 mm。其进水口、出水口和取样口都塞有无纺布,以 防填充材料溢出。反应器设置了实验用出水取样口, 以便于监测和对比分析。整个试验装置如图 1 所示。 其中,第一实验阶段:进口 I 为石英砂,粒径 0.5~1.0 mm,厚度10 cm; II 为石英砂,粒径<0.25 mm,厚度10 cm; III 为 20 cm 混合的活性材料。第二实验阶段:进口 I 为石英砂,粒径同第一实验阶段,厚度 5 cm; II 为石英砂,粒径同第一实验阶段,厚度 5 cm; III 为 30 cm 混合的活性材料。第三实验阶段:进口 I、II 为石英砂,厚度、粒径同第二实验阶段; III 为铁粉,粒径<0.25 mm,厚度 5 cm; IV 为 25 cm 活性填充材料。

表 2 反应器的配置 Table 2 Configurations of reactors

试验阶段	PRB	组成	粒径 (mm)	配比 (%)	试验阶段	PRB	组成	粒径 (mm)	配比 (%)
第一	反应器 1	陶粒	$0.5 \sim 1.5$	50			活性炭	$1.0 \sim 3.0$	33.33
		Fe ⁰	0<0.25	50			粉煤灰	0<0.25	33.33
	反应器 2	沸石	$0.5 \sim 1.5$	50	第三	反应器 1	Fe ⁰	0<0.25	12.5
		粉煤灰	0<0.25	50			沸石	$0.5 \sim 1.5$	12.5
	反应器 3	炉渣	$2 \sim 3$	50			炉渣	2.0<4.0	50
		Fe ⁰	0<0.25	50			无烟煤	$1 \sim 1.5$	12.5
	反应器 4	活性炭	$1.5 \sim 2.0$	50			活性炭	$1.0 \sim 3.0$	12.5
		Fe ⁰	0<0.25	50		反应器 2	沸石	$0.5 \sim 1.5$	25
	反应器 5	钢渣	$1.0 \sim 1.5$	50			炉渣	2.0<4.0	50
		Fe ⁰	0<0.25	50			Fe ⁰	0<0.25	12.5
	反应器 6	无烟煤	$1 \sim 1.5$	100			活性炭	$1.0 \sim 3.0$	12.5
第二	反应器1	炉渣	2.0<4.0	33.33		反应器 3	沸石	$0.5 \sim 1.5$	30
		活性炭	$1.5\sim2.0$	33.33			Fe ⁰	0<0.25	20
		Fe ⁰	0<0.25	33.33			活性炭	$1.0 \sim 3.0$	20
	反应器 2	沸石	$0.5 \sim 1.5$	33.33			粉煤灰	0<0.25	30
		活性炭	$1.0 \sim 3.0$	33.33		反应器 4	沸石	$0.5 \sim 1.5$	40
		粉煤灰	0<0.25	33.33			Fe ⁰	0<0.25	10
	反应器 3	钢渣	$1.0 \sim 1.5$	33.33			活性炭	$1.0 \sim 3.0$	10
		活性炭	$1.0\sim3.0$	33.33			粉煤灰	0<0.25	40
		Fe ⁰	0<0.25	33.33		反应器 5	沸石	$0.5 \sim 1.5$	50
	反应器 4	陶粒	$0.5 \sim 1.5$	33.33			Fe ⁰	0<0.25	10
		活性炭	$1.5\sim2.0$	33.33			活性炭	$1.0 \sim 3.0$	10
		Fe ⁰	0<0.25	33.33			粉煤灰	0<0.25	30
	反应器 5	无烟煤	$1.0 \sim 1.5$	33.33		反应器 6	Fe ⁰	0<0.25	10
		活性炭	$1.5\sim2.0$	33.33			沸石	$0.5 \sim 1.5$	40
		粉煤灰	0<0.25	33.33			炉渣	2.0<4.0	40
	反应器 6	炉渣	2.0<4.0	33.33			活性炭	$1.0 \sim 3.0$	10

Fig. 1 Schematic diagram of experimental equipment

反应器填装好后,连续从柱底缓缓注入清水,使 反应器内填充材料充分湿润到饱和,排除气泡。然后, 将润湿过程出水口作为实验运行进水口。反应器应水 平放置,以保证可渗透反应墙修复渗滤液污染地下水 处理模拟的近似性,配水器水位应高于反应器进口1.0 m,以保证各反应器拥有相同且稳定水头,在 6 种反 应器内,水的渗流速度保持在 90~150 cm/d。

装置运行后,每天 8:30—9:30 取水样监测分析,6 个反应器同步运行。主要分析指标包括:反应器进出 水的温度、溶解性氧、NH4⁺、pH 等,检测方法参照国 家标准方法^[10-11]。

2 实验结果与分析

2.1 NH₄⁺ 变化

由图 2 可知:第一反应阶段,反应器 1~6 对 NH₄⁺ 平均去除率仅仅为-8.0~3.0%,效果较差,大量出现 负值,反应器出水 NH4⁺不降反升的反应器数量超过 80%, 仅含沸石反应器 2 相对其他活性填充材料脱氮 效果较好,去除率为正值;第二反应阶段,反应器1~ 6 对 NH₄⁺ 平均去除率为 13.1% ~ 49.8%, 去除效果较 单一填充材料有很大提高,含沸石反应器2效果最好, 含无烟煤或陶粒混合材料反应器去除 NH4⁺ 能力较差, 添加粉煤灰反应器较添加铁粉反应器效果好; 第三反 应阶段,反应器1~6取样口处出水 NH₄⁺ 平均去除率 为 -14.2%~4.1%,反应器取样口出水 NH4⁺不降反升 的反应器数量超过 80%,出水口处出水 NH4⁺ 平均去 除率为 4.0%~10.8%, 相对取样口来说出水口 NH4⁺ 平 均去除率为 1.2% ~ 20.7%。所有反应器都有处理率先 渐渐降低而又稍微升高的趋势;复合填充材料处理能 力较单一填充材料有非常大提高,而且去除能力更趋 于稳定。各反应器对 NH4⁺去除效果存在较大差异,由 实验结果可见,对 NH4⁺ 去除率沸石最高,其他填充材 料依次为炉渣、活性炭、铁粉、陶粒、粉煤灰、无烟 煤、钢渣。

2.2 pH 值变化

pH 对 NH4⁺ 在地下水环境中的最终归宿起着重 要作用,是影响 NH4⁺ 环境行为的重要因素。由图 3~ 6 可知,反应器 pH 变化趋势基本一致:第一反应阶 段,反应器 1~6 降低 pH 值平均为 0.20~0.41,几种 活性材料对 pH 值的降低效果相当,粉煤灰组合较铁 粉组合效果更好,钢渣与铁粉组合平均降低量最小; 第二反应阶段,反应器 1~6 降低 pH 值平均为 0.06~ 0.15,去除效果较单一材料有很大降低,但出水 pH 值更稳定;第三反应阶段,反应器 1~6 取样口处出 水 pH 值都有所升高,平均升高量为 0.01~0.04,出 水口处出水 pH 值又普遍降低,平均降低量为 0.15~ 0.28, 各反应器相对取样口来说出水口 pH 值平均减 小量为 0.16~0.25, 而且出水 pH 值保持非常稳定。 所有反应器都有降低量先渐渐减小而又稍微增大的 趋势;各反应器对 pH 值影响效果存在较大差异,由 实验结果可见,对 pH 值的降低量活性炭最大,无烟 煤最小。

图 3 第一试验阶段反应器出水 pH 值变化曲线图

Fig. 3 pH curves of outlet water at 1st experimental stage

图 4 第二试验阶段反应器出水 pH 值变化曲线图

Fig. 4 pH curves of outlet water at 2nd experimental stage

图 6 第三试验阶段反应器出水口 pH 值变化曲线图 Fig. 6 pH curves of outlet water at 3rd experimental stage

3 NH4⁺变化机理初探

3.1 反应材料吸附作用机理

自然界中很多材料由于其独特化学组成和多孔结构,使其具有较大比表面积和吸附容量,产生一定吸附能力。实验采用的填充材料都具有明显吸附性能,其中沸石去除 NH4⁺效果最好。沸石对有机污染物吸附能力主要取决于有机物分子的极性和大小,极性分子较非极性分子易被吸附,随着分子直径增大,被吸入孔穴机会逐渐减小。据国内外文献报道,由于各种阳离子的水合半径的差异,斜发沸石对 NH4⁺具有较强的选择吸附能力,其阳离子交换顺序为:Cs⁺>Rb⁺>K⁺>NH4⁺>Sr²⁺=Ba²⁺>Ca²⁺>Na⁺>Fe³⁺>Al³⁺>Mg²⁺>Li⁺。从顺序来看,天然斜发沸石对 NH4⁺具有较强的选择吸附能力,这主要是 NH4⁺的离子半径为 2.86,较容易进入 4.00 的沸石孔道的缘故^[12]。因此,在上述各种阳离子共存的溶液中,除 Cs⁺、Rb⁺、K⁺ 外,优先吸附的是 NH4⁺。

影响材料吸附容量的因素主要有进水 pH 值、污染物浓度、吸附时间、环境温度等^[13],本实验因处于基本相似的处理环境,对 NH4⁺ 吸附体现出沸石吸附性能较其他材料效果较佳,这与高俊敏等^[12]的实验结果相似。沸石吸附机理(式中 Z 表示铝硅酸盐阴离子格架,X 表示交换离子): X⁺Z⁻+ NH4⁺→Z⁻+ X⁺。pH 值越高,沸石对 NH4⁺ 吸附能力越强,不过 pH 值过高不利于水处理,由图 3~6 见实验用 6 种反应器,3 个试验阶段pH 值普遍保持在 7.3~8.1 之间,没有回调必要性。图2 显示:前两个验阶段反应器 2 因都含有沸石,比其他反应器效果都好,从而证明沸石对 NH4⁺ 去除非常有效。设备运行一段时间后,由于各种活性填充材料吸附趋于饱和,从而降低其吸附性,处理率渐渐降低;

反应器对 NH₄⁺ 去除效果逐渐减弱,而含沸石混合物对 NH₄⁺ 去除效果持续时间更长,这说明含沸石混合物更 适合于对 NH₄⁺ 的去除。

反应器中添加粉煤灰比添加铁粉效果好,可能与 微电解有关,铁粉主要成分是 Fe 和 C 且存在电极电位 差,会形成无数微电池系统,阳极反应生成大量 Fe²⁺ 进 入水中,阴极反应产生大量新生态[H]和[O],引发一 系列连带协同作用,是集絮凝、吸附、架桥、卷扫、 共沉、电沉积、电化学还原等多种综合作用处理污染 物的水处理技术[14-16]。影响铁碳微电解处理效果的因 素主要有进水 pH 值、铁炭比、反应时间等^[17]。反应 器处理环境基本相似,不同之处就体现在铁碳比上, 反应器中添加粉煤灰比添加铁粉效果好,可能是铁粉 纯度较高,没有更多 C 参与电极反应,需在铁粉中适 当投加 C 来提高铁粉处理效果。经 Fe⁰反应后,污染 物毒性减少,并产生一定量的 H⁺,有稳定各反应器 pH 值功能,保持在7.3~8.1之间,这给微生物生长繁殖 创造了有利环境,在反应器内发生生物降解等作用, 进一步降低出水 NH4⁺,同时 pH 值升高,利于生成 Fe(OH)3沉淀,对降低Fe⁰次生污染有益。

3.2 溶解性氧变化与 NH₄⁺ 变化关系

在实验初期,反应器内含有一定量的溶解性氧, 利于硝化反应,在硝酸菌和亚硝酸菌作用下,基本反 应如下: $NH_4^+ + 1.5O_2 \rightarrow NO_2^- + H_2O + 2H^+, 2NO_2^- + O_2 \rightarrow 2NO_3^-, 产生 NO_2^- 和 NO_3^-,随反应进行, 溶解$ 性氧逐渐减少,最后保持稳定,硝化反应程度达到最小,对溶解性氧影响降至最低^[18-19]。在上述两反应共 $同作用下,降低了溶解性氧和 <math>NH_4^+$,同时也使 pH 值 产生下降趋势。

3.3 各种离子在反应材料修复过程中的作用规律

渗滤液中存在一定量 Mg²⁺、Ca²⁺ 等金属离子和

壤

NH₄⁺、PO₄³⁻等负离子,致使反应器内 pH 值偏碱性, 在碱性条件下发生反应生成沉淀,基本反应如下: Mg²⁺ + NH₄⁺ + HPO₄²⁻→6H₂O + MgNH₄PO₄↓ + 6H₂O + H⁺。 本反应在碱性条件下更易进行,由于反应器中 pH 值在 7.3 ~ 8.1 之间,因此有利于反应进行。本反应降低 NH₄⁺,同时也使 pH 值产生下降趋势,但如果反应器 中产生较多沉淀,会造成反应器堵塞,在现场应用时 要慎重考虑,必要情况下采取措施防止沉淀产生。

3.4 pH 值变化与 NH4⁺ 变化关系

3.4.1 厌氧氨化反应 反应器前期出水 pH 值有所 升高,说明各填充材料具有很强的吸附性能,能吸附 水中非极性和弱极性有机物,对有机物吸附效果良好。 由于整个反应器处理后期始终处于厌氧还原状态,在 厌氧环境下,以NH₄⁺ 为电子供体,以NO₂⁻或NO₃⁻ 为 电子受体,产生厌氧氨氧化反应^[20],基本反应如下: NH₄⁺+NO₂⁻→N₂+H₂O,5NH₄⁺+3NO₃⁻→4N₂+9H₂O+ 2H⁺。反应器在运行过程中产生一些气泡,应该是上述 反应产生的N₂,由此显示出厌氧氨化反应的存在。这 些反应消化一定量NH₄⁺,同时生产一定量H⁺,使pH 值产生下降趋势。

3.4.2 水解酸化反应 为缩短实验时间,保证有 好的实验效果,系统增加了进水浓度,其 COD 与 NH₄⁺ 浓度随之增高。有机物含量增高,利于水解-酸化反应 进行。水解酸化是将厌氧阶段控制在产酸阶段,所以 水解酸化出水较进水偏酸。水解酸化第一阶段反应, 将一些复杂不溶性聚合物转化为简单溶解性单体和二 聚体化合物,原水中部分难降解有机氮也经水解反应 后,被分解为易降解 NH4⁺,导致绝大部分反应器出水 NH₄⁺ 呈现增大趋势。产乙酸阶段在酸化细菌作用下, 将有机物降解为乙醇、乙酸、丙酸和丁酸等挥发性脂 肪酸和醇类,产生的脂肪酸会引起反应器内 pH 值较大 下降^[21]。第二试验阶段反应器出水 pH 值平均降低能 力较第一试验阶段出水 pH 值有很大降低,说明复合材 料较单一材料对污染因子,特别是有机物和 NH4⁺ 有很 好吸附性能(图2),从而降低了第二试验阶段反应器 内有机物含量,相应降低了水解酸化反应程度。

从图 2 可见,第三反应阶段反应器取样口处 NH4⁺ 去除率普遍高于进水,也证明在水解酸化作用下又有 新 NH4⁺ 产生,特别是随着停留时间增加,越到反应器 的后边,效果越明显;在有新 NH4⁺ 产生的情况下,反 应器出水口能保证较高的 NH4⁺ 去除率,证明复合填充 材料具有极强的吸附性能和吸附容量。在大量复合填 充材料吸附情况下从图 3~6 见 pH 值明显降低很多, 特别是第三阶段取样口 pH 值较进水口处 pH 值平均升 高 0.03,而出水口处 pH 值平均较进水口处 pH 值降低 0.22,这也充分证明水解酸化作用存在。

4 结论

(1)从地下水 NH4⁺和总氮污染数据可知,垃圾 渗滤液确实已经某些渠道渗入到了地下环境。

(2)本次试验选取的 PRB 介质经合理搭配后能 有效地去除垃圾渗滤液中的污染物, PRB 介质配比的 不同对地下水污染治理效果的影响是非常大的,说明 PRB 技术选择适当的反应介质及介质配比是该处理工 艺的关键环节。

(3)复合填充材料较单一填充材料脱氮效果好,
 沸石对 NH4⁺ 去除效果非常好,在 NH4⁺ 浓度较高情况
 下,可适当增加沸石比例。

(4) NH4⁺ 的去除机理包括氧化还原反应、硝化反应、金属沉淀、化学吸附、厌氧氨化反应、水解酸化反应与离子交换及物理吸附等,一般是几种作用相结合的结果。

(5) 三个试验阶段反应器出水 pH 值都有降低, 特别是第一阶段出水 pH 平均值较进水 pH 平均值降低 更明显,最高可达 0.41。

(6)反应器出水 NH₄⁺ 较进水有一定降低,但因 反应器内水解酸化反应存在,产生一定量 NH₄⁺,导致 NH₄⁺ 去除率普遍不高,部分反应器出水 NH₄⁺ 浓度甚 至高于进口浓度。

参考文献:

- Gillham RW, O'Hannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32(6): 958–967
- [2] Harald B, General O. NATO/CCMS Pilot Study: Evaluation of Demonstrated and Emerging Technologies for the Treatment of Contaminated Land and Groundwater (PhaseIII). 1998, 229: 1–2
- [3] Cantrell KJ, Kaplan D, Wietsma T. Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 1995, 42(2): 201–212
- [4] Schuth C, Bill M, Barth JAC, Slater GF, Kalin RA . Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers. Journal of Contaminant Hydrology, 2003, 66(1/2): 25-37
- [5] Turlough FG, Stuart H, Terry MG. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 2002, 36(1): 15–24

- [6] Kamolpornwijit W, Liang L, West OR. Preferential flow path development and its influence on long-term PRB performance: Column study. Journal of Contaminant Hydrology, 2003, 66(3/4): 161–178
- [7] Blowes DW, Ptacek CJ, Benner RW. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 2000, 45(1/2): 123–137
- [8] Sarah A, Lucilia F, Andrea C. Prevention and promotion in decentralized rural health systems: A comparative study from northeast brazil. Health Policy and Planning, 2005, 20(2): 69–79
- [9] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
- [10] 国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法.4版.北京:中国环境科学出版社,2002
- [11] 中华人民共和国卫生部中国国家标准化管理委员会.生活饮用水标准检验方法感官性状和物理指标(GB/T5750.4-2006). 北京:中国标准出版社,2007
- [12] 高俊敏,郑泽根,王琰,豆俊峰.沸石在水处理中的应用.重 庆建筑大学学报,2001,23(1):114-117
- [13] 宋吉英. 交联羧甲基壳聚糖对镁的吸附性能研究. 化学世界, 2010(5): 267-269, 273

- [14] 李杰,程爱华,孙莉婷,蒋进元,周岳溪.铁炭耦合 Fenton 试剂-混凝沉淀法预处理 DMAC 废水.环境科学研究,2010,23(7): 902-907
- [15] Monem K, Chokri B, Rachdi B. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen Peroxide. Journal of Hazardous Materials, 2009, 163(2/3): 550–554
- [16] 李东伟, 兰天, 高先萍. 微电解-絮凝预处理味精发酵废母液 实验研究. 环境工程学报, 2009, 3(11): 1 977-1 980
- [17] 周永强,黄伟,昌培培,杨莹.铁碳微电解法预处理染料废水的研究.环境科学与管理,2010,35(7):79-81
- [18] 杨维,杨军锋,高延纲,王立东. PRB 修复多组分与单组分污染地下水的实验. 沈阳建筑大学学报(自然科学版), 2009, 25(2): 333-337
- [19] 夏立江,许立孝,温小乐,林征峰,李轶伦,贺志坚.城市垃圾
 渗沥液引起地下水氮污染的研究.农业环境保护,2001,20(2):
 108-110
- [20] 陈婷婷,郑平,胡宝兰. 厌氧氨氧化菌的物种多样性与生态分布. 应用生态学报, 2009, 20(5): 109-114
- [21] 胡纪萃. 废水厌氧生物处理理论与技术. 北京: 中国建筑工业 出版社, 2003: 24-28

Variation of NH4⁺ in Leachate-polluted Groundwater Under Condition of PRB Remediation

CUI Hai-wei, SUN Ji-chao, HUANG Guan-xing, JING Ji-hong, ZHANG Yuan-jing, WANG Jin-cui, ZHANG Ying (*The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang* 050061, *China*)

Abstract: The groundwater remediation was modeled by using zeolite, anthracite, haydite, activated carbon, steel slag, slag, coal-dust ash, and Fe^0 as filling materials and six Permeable Reactive Barriers (PRBs, reactor1, 2, 3, 4, 5 and 6 respectively) were designed to research on the leachate-polluted groundwater. Experiments on the variation of NH_4^+ in leachate-polluted groundwater under the condition of PRB remediation were modeled for three stages and the mechanisms of NH_4^+ variation in reactors were discussed. The results showed that the removal rates of NH_4^+ were low, zeolite reactor for denitrification was better than others, and its ability for removal rate of NH_4^+ was 49.8%, negative values for denitrification were observed in some reactors, which may be caused by the hydrolysis and acidification since they could produce NH_4^+ and organic acids. The above results proved that actual treatment capacities of filling materials were not expressed fully the experimental results. Therefore, PRB technology for the treatment of leachate-polluted groundwater is feasible under the condition of further study.

Key words: Permeable Reactive Barrier (PRB), Leachate, Groundwater, NH₄⁺