天鹅湖沉积物对磷的吸附动力学及等温吸附特征

高 丽,侯金枝,宋鹏鹏

(烟台大学海洋学院,山东烟台 264005)

摘 要:以荣成天鹅湖这一天然泻湖为研究对象,研究了 6 个样点沉积物对磷的吸附动力学曲线和等温吸附方 程,并分析了沉积物理化性质与磷吸附参数间的关系。结果表明,天鹅湖不同区域沉积物对磷的吸附动力学均符合二 级动力学方程,吸附反应主要在前 10 h 内完成,且 0~2 h 内反应迅速。根据 Langmuir 模型,6 个样点沉积物对磷的 理论吸附容量(*Q*_{max})的范围为 294.12~1 111.11 mg/kg,其中湖区北部和中部沉积物的吸附能力高于南部。沉积物对水 体中磷的吸附解吸平衡浓度(EPC₀)的变幅为 0.002~0.033 mg/L,其与沉积物本底吸附态磷(NAP)呈较弱的正相关关系。 本研究条件下,大部分样点的 EPC₀ 小于上覆水中磷的浓度,其中湖区西北部和东南部沉积物中磷具有向上覆水体释 放的趋势。沉积物的 NAP 与总氮、有机质、活性铝和黏粒间均呈显著正相关,*Q*_{max}与铁铝结合态磷、有机质、活性 铝和粉粒间呈显著的正相关关系。活性铝、有机质和粒度是影响沉积物磷吸附的主要因素。

关键词:沉积物;磷;吸附动力学;EPC₀;荣成天鹅湖

中图分类号:X131.2

磷是湖泊生态系统重要的生源要素,其在沉积物 --水界面的吸附和解吸是一复杂的动力学过程,天然 水体沉积物到底是吸附磷作为"汇"还是解吸磷成为 "源",与水环境中磷的浓度及当时介质条件下的吸 附解吸平衡浓度(EPC₀)有关^[1-2]。沉积物对磷的吸附 与其自身的粒度组成和理化性质等关系密切,其中受 铁铝氧化物、阳离子交换量影响显著^[3-5]。另有研究 报道有机分子能与铁铝等金属离子发生络合,进而加 强沉积物对磷的吸附^[6-7]。Lopez 等^[8]的研究发现,有 机碳和碳酸钙含量对磷的吸附也有一定的影响。吸附 动力学的研究有助于揭示沉积物吸附磷的机制,安文 超等学者^[9-10]的研究均表明沉积物对磷的吸附动力 学符合二级动力学方程。磷吸附的影响因素因沉积物 类型的差异而有所不同。近年来,国内外学者就沉积 物对磷的吸附特性及其影响因子进行了大量的模拟 研究^[11-12],但主要集中在淡水湖泊、水库或河流,有 关海岸带泻湖的报道不多。

荣成天鹅湖,位于山东省最东端荣成市内,是一 个半封闭的海湾泻湖,湖东南部有一条狭长的潮汐汊 道与外海相通;湖水为弱碱性,水深在2m以内^[13]。 荣成天鹅湖湿地是黄渤海交界处最重要的湿地资源 之一,已被列为"国家级自然保护区"。近几十年来, 由于人类在湖区建坝以及围垦发展水产养殖业,造成 了泥沙淤积和水质恶化^[14],湿地的生态系统遭到一 定程度破坏。本文以天鹅湖这一天然泻湖为研究对 象,通过室内模拟研究了沉积物对磷的吸附动力学过 程和等温吸附特性,并结合不同区域的自然地理特 征,利用 EPC₀值初步判断了沉积物的"汇源"功能, 从而为阐明滨海湿地对水体中磷的净化能力及机理 提供参考依据。

1 材料与方法

1.1 样品采集

2010 年 5 月,利用 GPS 全球定位系统,在天鹅 湖的不同方位选取 6 个代表性样点,采集表层沉积物 样品(0~10 cm),自然风干后,过 100 目筛备用。各 样点的地理位置及理化性质见表 1。

1.2 实验方法

1.2.1 吸附动力学实验 称取沉积物干样 0.50 g 于 100 ml 离心管中,加入 30.0 mg/L 的磷酸盐溶液 50 ml, 土水比为 1:100,加 2 滴 0.1% 氯仿抑制微 生物作用。在 25 ±1 下分别振荡 1/12、1/4、1/2、 3/4、1、2、3、5、7、10、12、15、18、24 和 48 h, 离心、过滤,用钼锑抗比色法测定滤液中可溶性磷的

基金项目:国家自然科学基金面上项目(41273130)和国家自然科学基金青年基金项目(40801084,31001113)资助。

作者简介:高丽(1976—),女,山东聊城人,博士,副教授,主要从事湿地生源要素磷循环的研究。E-mail: ligao117@126.com

表1 采样点的描述及沉积物的理化性质

壤

第45卷

Table 1 Description of sampling sites and physico-chemical parameters of sediments							
样点	样点描述	pН	黏粒(g/kg)	有机质(g/kg)	总磷(mg/kg)	总氮(mg/kg)	
S1	西北部 ,靠近虾池 ,外侧湿地为大天鹅栖息地	3.50	453.0	57.19	511.74	1 700.04	
S2	北部,湖底生长少量植物,表层泥样稀	6.36	165.8	19.66	374.78	970.40	
S3	西部,荣成六中附近,污水排放入口	6.94	14.95	26.15	521.58	1 182.18	
S4	湖中心,湖水较深,湖底生长大量大叶藻	5.69	373.7	37.64	565.12	1 506.66	
S5	东南部,涨潮三角洲区域,周期性露出水面	8.67	82.8	7.35	203.89	526.85	
S 6	西南部,湖水可见度高,湖底植物较多	5.44	57.8	7.56	268.64	335.50	

含量。根据吸附前后溶液中可溶性磷的浓度差,计算 沉积物对磷的吸附量,确定达到吸附平衡的时间。

磷吸附量计算公式: $Q = (C_0 - C_{eq}) \times V/W$,其中 Q为吸附量(mg/kg), C_0 为初始质量浓度(mg/L), C_{eq} 为平 衡质量浓度(mg/L),V为加入样品中的溶液体积(ml), W为沉积物干重(kg)。吸附动力学实验数据分别采用一 级动力学和二级动力学方程的线性形式进行拟合,公式 为: $\ln(Q_e - Q) = \ln Q_e - k_1 t(- 4), t/Q = 1/k_2 Q_e^2 + t/Q_e (- 4),$ 式中, Q_e 和 Q 分别为平衡吸附量和时间为 t 时的吸附 量, k_1 和 k_2 是吸附速率常数。

1.2.2 等温吸附实验 本研究中的等温吸附实验 分别在两个条件下进行:其一是接近湖水实际情况的 低浓度系列,初始磷浓度(C_0)为0、0.02、0.05、0.10、 0.15和0.20 mg/L;其二是高浓度条件,初始磷浓度 为0、0.5、1.0、2.0、3.0、5.0、10.0、15.0、30.0和 50.0 mg/L。具体操作为:称样,分别加入上述浓度的 KH₂PO₄溶液(配制在0.01 mol/L 的 CaCl₂中),恒温振 荡 24 h 后(25 ±1),离心、过滤,测定滤液中可溶 性磷的含量。具体步骤同动力学实验。

1.3 分析方法

沉积物有机质:重铬酸钾氧化法;全磷:氢氟酸– 高氯酸酸溶,钼锑抗比色法;磷形态采用 SMT 法; 粒度分析:根据司笃克斯定律,自由沉降法测定;活 性铁、铝:草酸铵/草酸溶液浸提后用 ICP-AES 法测 定^[15]。实验室所用器皿均用稀盐酸浸泡过夜,所用 药品均为分析纯。

数据处理采用 SPSS 统计软件包(13.0 版本)。

2 结果与讨论

2.1 表层沉积物对磷的吸附动力学

由图 1 可见,天鹅湖 6 个样点沉积物对水体中磷 的吸附具有相似的变化趋势,吸附量表现为随时间的 延长而逐渐增加,10 h 后变幅不大。以点 S1 为例,0 ~10 h 内沉积物对磷的吸附量变幅为 497.01 ~ 703.93 mg/kg,10~48 h 内的变幅为 703.93~856.47 mg/kg, 而 24~48 h 内仅为 791.92~856.47 mg/kg,表明沉积 物对磷的吸附在前 24 h 内基本达到了平衡状态。

天鹅湖沉积物对磷的吸附速率随着时间的延长 而逐渐降低,基本在0~10h内较大,平均吸附速率 为 45.79 mg/(kg·h), 为快吸附阶段; 10 h 后吸附速率 均小于 4.5 mg/(kg.h), 为慢吸附阶段。6 个样点沉积 物在 0~0.25 h 和 0~0.5 h 内吸附速率的变幅分别为 $481.43 \sim 2 004.23 \text{ mg/(kg·h)和 } 371.41 \sim 1 022.32$ mg/(kg·h), 而 0.25 ~ 0.5 h 内仅为 25.46 ~ 295.58 mg/(kg·h)。由此可见,不能仅凭吸附速率来确定吸 附发生的主要阶段,还应计算该阶段内的吸附量占吸 附平衡时总量的百分比。本实验中,6个样点沉积物 在 0~2 h 内对磷的吸附量与吸附平衡时(48 h)总量的 比例变化在 50.31%~67.18% 之间 :而前 10 h 内的吸 附量约占平衡时总量的 80% 这一数值与安文超和李 小明^[9]及魏荣菲等^[11]的研究结果基本一致。由以上分 析可知 ,天鹅湖沉积物对磷的吸附作用主要发生在快 吸附过程的前2h内,10h后为磷的慢吸附阶段,与 淡水沉积物的研究结果区别不大。

磷的吸附动力学数据用二级动力学方程拟合的 线性相关系数明显大于一级动力学方程,且前者 R² 均接近 1.00(表 2)。由二级动力学方程计算得出的平 衡吸附量(Q_{ec})与实验测得实际平衡吸附量(Q_{e})较为 接近,说明天鹅湖沉积物对磷的吸附更符合二级动力 学方程。6 个样点沉积物 Q_{ec} 的大小依次为 S1 > S3 > S4 > S2 > S5、S6,这与各样点沉积物的理化性质有 关(表 1)。点 S1 位于天鹅湖西北角,沉积物粒度组成 偏细,黏粒、粉粒和有机质含量较高,具有较大的比 表面积,对磷的吸附能力较强;而点 S5 与 S6 位于 与外海相连的南部,沉积物以砂粒为主,吸磷能力较 弱^[9,12]。

	表 2	沉积物吸附动力学方程的相关参数	
Table 2	Paran	neters of adsorption kinetics equation on sediments	5

采样点	Q_{e}	一级动力学			二级动力学		
	(mg/kg)	$K_1(\mathbf{h}^{-1})$	$Q_{\rm ec}({\rm mg/kg})$	R^2	$K_2(\text{kg/(mg \cdot h)})$	$Q_{\rm ec}({\rm mg/kg})$	R^2
S1	791.92	0.08	341.38	0.97^{**}	1.11	833.33	1.00**
S2	476.62	0.01	287.44	0.99**	1.13	526.32	0.99**
S3	638.73	0.11	314.54	0.96**	1.41	666.67	1.00**
S4	608.84	0.10	281.04	0.99**	1.51	625.00	1.00**
S5	331.83	0.10	200.56	0.93**	1.55	370.37	0.99**
S6	343.28	0.10	195.64	0.92**	1.74	370.37	0.99**

注:* 表示在 P < 0.05 水平显著相关, ** 表示在 P < 0.01 水平显著相关, 下同。

2.2 沉积物对磷的等温吸附

在低磷浓度范围内,沉积物对磷的吸附符合线性 方程: $Q = m \times C_{e}$ -NAP,其中Q为沉积物对磷的吸附 量(mg/kg), C_{e} 为平衡磷浓度(mg/L),NAP为沉积物 本底吸附态磷(mg/kg),m为斜率(L/kg)。在本研究条 件下(0~0.50 mg/L),天鹅湖沉积物对磷的吸附量与 平衡磷浓度间存在较好的线性相关, R^{2} 变化在0.86~ 0.96之间。如图2所示,在初始磷浓度较低的情况下, 6个样点沉积物均存在解吸行为,随着磷浓度的增大 而逐渐进入吸附区。各样点沉积物对磷的吸附量也随 初始磷浓度的增大而增加,其中点S5吸附量的变幅 明显低于其他样点。

沉积物对水体中磷的吸附解吸平衡浓度(EPC₀) 是确定沉积物发生吸附或释放行为的一个重要因子。

当 $C_{e} > EPC_{0}$ 时,沉积物吸附上覆水体的磷;而当 C_{e} < EPC₀时, 沉积物向上覆水体释放磷^[16]。由表 3 可 见 天鹅湖 6 个样点 EPC₀ 的变化范围为 0.002~0.033 mg/L。各样点的 EPC₀ 值依次为: S5 > S1 > S3 > S4 > S2 > S6,其中水域污染较严重的样点较高(如 S1 和 S3),这与姜霞等^[17]对太湖的研究结果相似。将各 样点的上覆水中可溶性磷浓度(SRP)与 EPC₀ 进行比 较可知,点 S1 和 S5 的水体磷浓度低于沉积物的 EPC₀,其余样点则相反(表 3)。点 S1 位于湖区西北 部,其外侧是大天鹅等禽鸟的栖息地和旅游度假区, 外源污染严重,沉积物总磷含量较高;而点 S5 位于 东南部涨潮三角洲区域,周期性水淹使沉积物难以固 定磷,并易于向水体释放^[18]。因此,点 S1 和 S5 沉 积物中的磷具有向上覆水体释放的趋势 沉积物表现 为水体的磷"源"; 而点 S2、S3、S4 和 S6 沉积物具 有吸附上覆水中磷的能力,表现为水体的磷"汇"。 由此可见,目前天鹅湖大部分样点沉积物对水体中的 磷起缓冲作用,而湖西北部和东南部沉积物中磷具有 向上覆水体释放的趋势,其中磷内负荷较高的西北部 沉积物的释磷风险较高。

用方程 $Q = Q_{max}K_LC/(1+K_LC)$ (Langmuir 模型)和 $Q = K_FC^{1/n}$ (Freundlish 模型)对高磷浓度系列的吸附数 据进行拟合。两个模型对天鹅湖沉积物等温吸附数据 的拟合效果均较好,且 6 个样点用 Langmuir 模型拟 合的 R^2 均高于 Freundlish 模型(表 3),表明用 Langmuir 模型来描述天鹅湖沉积物磷的吸附特征更为合理。根 据 Langmuir 模型计算 6 个样点沉积物的最大理论吸 附容量(Q_{max}),其变幅为 294.12~1111.11 mg/kg。与

表 3 沉积物的等温吸附方程拟合参数 3 Parameters of phosphate adsorption isotherms equation on sedime

Table 5 Parameters of phosphate adsorption isometinis equation on sediments									
样点 水体 SRP (mg/L)	水体 SRP	线性方程		Langmuir 方程			Freundli	Freundlish 方程	
	(mg/L)	EPC ₀ (mg/L)	$W_{\rm NAP}(\rm mg/kg)$	$Q_{\rm max}({\rm mg/kg})$	$K_{\rm L}({\rm L/mg})$	R^2	$K_{ m F}$	R^2	
S1	0.018	0.022	29.24	1 111.11	0.90	0.84**	141.16	0.78^{**}	
S2	0.011	0.005	5.47	666.67	0.47	0.91**	96.34	0.83**	
S 3	0.013	0.008	6.48	833.33	0.41	0.87^{**}	104.71	0.86**	
S4	0.010	0.007	14.49	625.00	0.64	0.91**	111.35	0.78^{**}	
S5	0.010	0.033	4.22	400.00	0.18	0.91**	35.22	0.90^{**}	
S 6	0.013	0.002	0.70	294.12	0.29	0.89**	55.99	0.79^{**}	

其他淡水沉积物相比,如中国的南四湖^[9]、英国的 River Lugg^[19]等,天鹅湖的 Q_{max} 值较高,说明其沉积 物对磷的吸附能力较强,这与海岸带泻湖沉积物中高 的碳酸钙含量有关。不同样点相比,点 S1 沉积物的 Q_{max} 最高,而点 S5 和 S6 较低,与动力学方程计算 得出的平衡吸附量(Q_{ec})规律一致。6 个样点的吸附常 数(K_L)变化在 0.18 ~ 0.90 L/mg 之间,其中点 S5 和 S6 较低。以上分析可见,天鹅湖北部沉积物对磷的吸附 能力高于南部。

2.3 吸附参数与理化性质的相关性分析

沉积物的本底吸附态磷(NAP)与其理化参数关系 密切^[3]。由表 4 可知,天鹅湖 6 个样点沉积物的 NAP 与有机质(OM)、总氮(TN)、活性铝(Al_{ax})和黏粒(<5 μm) 间均存在显著的正相关关系,与铁铝结合态磷(Fe/Al-P) 呈正相关(r = 0.43)。 Q_{max} 与 Fe/Al-P、TN、OM、Al_{ox} 和粉粒间呈显著正相关,其中与 Al_{ox} 的相关系数最高(r= 0.97),Börling 和 Otabbong^[21]也发现 Q_{max} 与 Al_{ox} 间有 较好的相关性。与天鹅湖的研究结果不同,南四湖和汉 江沉积物的 Q_{max} 与 Fe/Al-P 间均呈负相关,其中南四湖 沉积物的 NAP 与 Fe-P 间也呈负相关^[9,22]。这与天鹅湖 受涨落潮的影响,水体化学环境因子变化剧烈有关,此 外由于咸水和淡水沉积物自身的理化性质不同,对磷的 吸附特性也有很大不同。TN、OM 均可作为指示污染 程度的指标^[3],可见天鹅湖沉积物对磷的吸附能力与其 污染程度有关。Lopez 等^[8]对泻湖沉积物的研究发现, 有机碳和碳酸钙含量对磷的吸附也有一定的影响。总的 来说,沉积物中 OM、TN、Al_{ox}和细颗粒的含量越高, 其本底吸附态磷及最大吸磷量也越高。

Table 4 C	Contention coefficients between parameters of F ausorption and chemical-physical properties of sediments						
	EPC_0	NAP	т	$K_{ m L}$	Q_{\max}		
ТР	-0.32	0.64	0.84^{*}	0.78	0.75		
IP	-0.42	0.58	0.86^{*}	0.76	0.69		
Ca-P	-0.47	0.46	0.96**	0.66	0.33		
Fe/Al-P	-0.11	0.43	0.30	0.49	0.81*		
TN	0.15	0.86^{*}	0.83*	0.92^{*}	0.88^*		
OM	0.08	0.96**	0.74	0.98**	0.89^{*}		
黏粒(<5 µm)	0.10	0.95**	0.83*	0.96**	0.76		
粉粒(10~50 μm)	-0.25	0.73	0.88^*	0.89^{*}	0.84^{*}		
Al _{ox}	0.18	0.93**	0.62	0.93*	0.97^{**}		
Fe _{ox}	-0.37	0.55	0.85^{*}	0.74	0.75		

表 4 沉积物磷吸附特征参数与理化性质间的相关性分析

Langmuir 方程中吸附常数(K_L)表示吸附能力的 大小,其与 TN、OM、黏粒、粉粒和 Al_{ox}间的相关 性均达到了显著水平,其中与 OM 和黏粒的相关性 最好(表 4)。*m* 是在低浓度范围内磷等温吸附曲线中 的斜率,通常表示吸附效率;本研究中*m*与 TP、IP、 TN、黏粒、粉粒和活性铁(Fe_{ox})间有显著正相关关系, 与 Ca-P 间呈极显著正相关。以上分析可知,TN 和细 颗粒的含量是影响沉积物磷吸附能力和效率的主要 因子,此外 OM 和 Ca-P 的含量对沉积物吸附磷也有 重要影响。

天鹅湖沉积物的 EPC₀ 与其理化性质、磷形态间 不存在显著的相关性。本研究条件下, EPC₀ 与 NAP 间呈正相关关系(*r* = 0.30),即具有高本底吸附态磷的 沉积物易于向上覆水体释放;而对南四湖和苏州河淡 水沉积物的研究发现 $EPC_0 与 NAP$ 间的相关性达到 了显著水平。

由以上分析可见,海岸带泻湖由于在水文过程与 水化学方面与内陆淡水水体差异较大,故沉积物对磷 的吸附特征与淡水体系也有所不同。活性铝、有机质 和粒度是影响天鹅湖沉积物磷吸附的主要因素。天鹅 湖是一个海水与淡水交融的天然泻湖,由于受涨落潮 的影响,其水体化学环境因子变化剧烈,盐度变化对 沉积物磷吸附解吸过程的影响不容忽视。对天鹅湖周 围湿地的研究发现,沉积物对磷的吸附量随盐度的增 加呈先升高、后降低的变化趋势^[23]。当盐度达到一 定水平时,水中的 SO4²⁻、OH⁻等阴离子与 PO4³⁻竞 争沉积物表面的活性位点,使沉积物对磷的吸附能力 降低^[24]。沉积物对磷的吸附是多因素综合作用的结 果,想更加全面地了解滨海湿地沉积物对水体中磷的 吸附净化能力,还需进一步加强盐度等环境因子对沉 积物磷吸附解吸影响的研究。

3 结论

(1) 与淡水沉积物类似,天鹅湖沉积物对磷的吸附动力学符合二级动力学方程,在 24 h 时基本达到 了平衡状态。沉积物对磷的吸附主要发生在快吸附(0 ~10 h)的前 2 h 内,10 h 后逐渐达到吸附平衡。高磷 浓度条件下,沉积物对磷的吸附等温线更适合用 Langmuir 模型进行描述,湖区北部沉积物对磷的吸 附能力远高于南部。

(2) 6个样点沉积物 EPC₀的变化范围为 0.002 ~ 0.033 mg/L,大部分样点沉积物对上覆水体中磷起到 缓冲作用;污染较为严重的西北部及与外海相连的涨 潮三角洲区域的沉积物具有向上覆水体释放磷的趋势,其中磷内负荷较高的西北部沉积物内源释放对水 体质量的威胁不容忽视。

(3)海岸带泻湖沉积物由于自身理化性质的差异,其对磷的吸附特性与淡水沉积物也有较大不同。 沉积物理论最大吸附容量与活性铝和铁铝结合态磷间显著正相关,而 EPC₀与沉积物理化性质间的相关 性较差。活性铝、有机质和粒度是影响海岸带泻湖沉 积物磷吸附的主要因素。天鹅湖属于泻湖-潮汐汊道 体系,环境条件复杂,环境因子对沉积物磷吸附解吸 的影响尚需进一步的研究。

参考文献:

 Abrams MM, Jarrell WM. Soil-phosphorus as a potential non-point source for elevated stream phosphorus levels[J]. Journal of Environmental Quality, 1995, 24: 132–138

- [2] 金相灿,姜霞,王琦,刘冬梅.太湖梅梁湾沉积物中磷吸 附/解吸平衡特征的季节变化[J].环境科学学报,2008, 28(1):24-30
- [3] 王圣瑞,金相灿,赵海超,庞燕,周小宁,楚建周.长江 中下游浅水湖泊沉积物对磷的吸附特征[J].环境科学, 2005,26(3):39–43
- [4] 王彦,张进忠,王振华,李太魁,贺春凤,朱波.四川盆 地丘陵区农田土壤对磷的吸附与解吸特征[J].农业环境 科学学报,2011,30(10):2068-2074
- [5] Wang Y, Shen ZY, Niu JF, Liu RM . Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009, 162: 92–98
- [6] Guppy CN, Menzies NW, Moody PW. Competitive sorption reactions between phosphorus and organic matter in soil: A review[J]. Australian Journal of Soil Research, 2005, 43(2): 189–202
- Jugsujinda A, Krairapanona A, Patrick WH. Influence of extractable iron, aluminum, and manganese of P sorption in flooded acid sulfate soils[J]. Biology and Fertility of soils, 1995, 20: 118–124
- [8] Lopez P, Luch X, Vidal M . Adsorption of phosphorus on sediments of the Balearic (Spain) related to their composition[J] .Estuarine, Coastal and Shelf Science, 1996, 42: 185–195
- [9] 安文超,李小明.南四湖及主要入湖河流表层沉积物对
 磷酸盐的吸附特征[J].环境科学,2008,29(5):1 295-1 302
- [10] 李北罡, 马钦, 刘培怡.黄河中下游沉积物对磷酸盐的吸 附动力学研究[J].生态环境学报, 2010, 19(8): 1 901-1 905
- [11] 魏荣菲,庄舜尧,杨浩,戎静.苏州河网区河道沉积物磷 的吸附释放特征研究[J].水土保持学报,2010,24(3): 232-237
- [12] Jin XC, Wang SR, Pang Y, Zhao HC, Zhou N. The adsorption of phosphate on different trophic lake sediments[J]. Colloids and Surfaces, 2005, 254: 241–248
- [13] 薛允传, 贾建军, 高抒.山东月湖的沉积物分布特征及搬运趋势[J].地理研究, 2002, 21(6): 705–714
- [14] 王友爱, 李平.海岸生态环境变化对荣成市月湖旅游资 源影响研究[J].海岸工程, 2009, 28(2): 98–104
- [15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科 技出版社,2000:65-69
- [16] Lucci GM, McDowell RW, Condron LM. Evaluation of base solutions to determine equilibrium phosphorus concentrations (EPC₀) in stream sediments[J]. International Agrophysics, 2010, 24: 157–163

壤

- [17] 姜霞, 王秋娟, 王书航, 金相灿, 李永峰.太湖沉积物氮 磷吸附/解吸特征分析[J].环境科学, 2011, 32(5): 1 285-1 291
- [18] Qiu S, Mccomb AJ. Effects of oxygen concentration on phosphorus release from reflooded, air-dried wetland sediments[J]. Australian Journal of Marine and Freshwater Resources, 1994, 45: 1 319–1 328
- [19] Jarvie HP, Jurgens MD, Williams RJ. Role of river bed sediments as sourced and sinks of phosphorus across two major eutrophic UK river basins: The Hampshire Avon and Herefordshire Wye[J]. Journal of Hydrology, 2005, 304: 51–74
- [20] Wang QR, Li YC. Phosphorus adsorption and desorption behavior on sediments of different origins[J]. Soils

Sediments, 2010, 10: 1 159-1 173

- [21] Börling K, Otabbong E . Phosphorus sorption in relation to soil properties in some cultivated Swedish soils[J] .Nutrient Cycling in Agroecosystems, 2001, 59: 39–46
- [22] Tian JR, Zhou PJ. Phosphorus fractions and adsorption characteristics of floodplain sediments in the lower reaches of the Hanjiang River, China[J]. Environ Monit Assess, 2008, 137: 233–241
- [23] 高丽, 史衍玺, 孙卫明, 唐志红.荣成天鹅湖湿地沉积物 对磷的吸附特征及影响因子分析[J].水土保持学报, 2009, 23(5): 162–166
- [24] 安敏, 文威, 孙淑娟, 黄岁樑.pH 和盐度对海河干流表 层沉积物吸附解吸磷(P)的影响[J].环境科学学报, 2009, 29(12): 2 616-2 622

Characteristics of Adsorption Kinetics and Isotherms of Phosphate on Sediments in Swan Lake

GAO Li, HOU Jin-zhi, SONG Peng-peng

(Ocean School, Yantai University, Yantai, Shandong 264005, China)

Abstract: Adsorption kinetics and isotherms of phosphate on six sediments collected in Rongcheng Swan Lake (a nature lagoon) were determined in laboratory, and the relationship between the physical-chemical properties and the adsorption parameters of sediments was also discussed. The results indicated that the adsorption kinetics curve of phosphate at different sites all followed the second-order adsorption kinetic model. The adsorption reaction mainly occurred within 0-10 h, and the maximum adsorption rates occurred within 0-2 h. According to the Langmuir isotherm equation, phosphate adsorption capacity (Q_{max}) of surface sediments from Swan Lake varied from 294.12 mg/kg to 1 111.11 mg/kg. Phosphate sorption potential on the sediments from the northern and center areas was much higher than that from the south. The zero equilibrium phosphate concentration (EPC₀) changed at the range of 0.002-0.033 mg/L, which had no significant positive correlation with the native absorption phosphate (NAP). At most sites the EPC₀ values were lower than soluble reactive phosphorus concentration in the overlying water. The phosphorus in the sediments from the northwest and southeast of Swan Lake had a release potential into the overlying water. The NAP of sediments was closely related to the concentrations of organic matter (OM), total nitrogen, clay and aluminum extracted by ammonium oxalate (Al_{ox}), and the Q_{max} was closely related to Fe/Al-bound phosphorus (Fe/Al-P), OM, Al_{ox} and silt concentrations. In conclusion, amorphous aluminum oxide, organic matter and grain size in the sediments were the main effecting factors of phosphate adsorption.

Key words: Sediments, Phosphorus, Adsorption kinetics, EPC₀, Rongcheng Swan Lake