土壤溶液性质对水溶性镍的西红柿毒害的影响

张晓晴¹,韦东普²,李 $波^2$,马义兵^{2*},黄占斌¹

(1 中国矿业大学(北京)化学与环境工程学院,北京 100083;2 中国农业科学院农业资源与农业区划研究所,北京 100081)

摘 要:选取 17 种具有代表性的中国土壤,研究土壤溶液性质对土壤孔隙水以及 0.01 mol/L CaCl₂ 浸提液中 镍(Ni)植物毒害的影响。结果发现,孔隙水中 Ni(PW-Ni)对西红柿地上部分生物量 50% 抑制的毒性阈值(EC50)变化范 围为 1.02~8.91 mg/L,最大值是最小值的 8.7 倍;CaCl₂-Ni的毒性阈值 EC50 变化范围为 0.77~20.40 mg/kg,最大 值是最小值的 26.5 倍,表明土壤溶液性质对水溶性 Ni 的毒性阈值影响很大。土壤 PW-Ni 毒性主要受到 K⁺、Mg²⁺、S 的影响,基于这 3 个因子的回归方程可以较好预测 PW-Ni 对西红柿毒性阈值 EC50,决定系数为 0.71。当回归方程包 括土壤溶液中溶解性有机碳(DOC)、pH、电导率(EC)、Ca²⁺、Na⁺ 时,其决定系数提高到 0.84,说明其他因子对 PW-Ni 的毒性也存在一定的影响,利用这些土壤溶液性质可以较好预测 PW-Ni 的植物毒性阈值。

关键词:土壤;镍;毒害效应;西红柿

中图分类号:X53;X592

镍(Ni)是组成生物体内许多酶(如乙二醛酶、脱甲 酰基酶等)的微量元素,参与生物体的代谢过程,然 而当 Ni 的含量超过一定的范围时,植物体细胞活性 受到抑制或植物减产。随着金属冶炼、电镀等工业生 产活动的发展,Ni 在土壤环境中过量积累导致环境 污染,因此研究 Ni 的生物有效性/毒性对于 Ni 的 环境风险评价有着重要的意义。

目前,国内外关于重金属生态风险评价的研究主要集中在土壤重金属总量对植物的毒害,大量的研究 表明土壤理化性质对重金属形态及其生物有效性/毒 性有着重要影响^[1-4]。张洪涛等^[1]研究我国 17 个土 壤中外源 Ni 对西红柿的毒害,结果发现 pH 和有 机碳是影响外源 Ni 对西红柿生长毒害的主控因子; Rooney等^[4]发现有效阳离子交换量(CEC)是控制欧洲 土壤外源 Ni 对西红柿毒害的最重要因子。然而以总 浓度为依据的重金属毒性阈值范围较大,如在 17 个 中国土壤上外源 Ni 的毒性阈值(EC50)的最大值与 最小值的比值高达 294 倍^[1],而在 16 个欧洲土壤 上 EC50 的差异也达到了 54 倍^[4]。重金属的毒性直 接与自由金属离子活度有关,而自由金属离子的活度 和土壤溶液性质如 Ca²⁺、Mg²⁺、pH、DOC(溶解性有 机碳)等有关,如阳离子(K⁺、Na⁺、Mg²⁺、Ca²⁺和 H⁺) 能够和自由金属离子竞争生物配体的结合位点从而 减弱金属的毒性^[5]。pH 是影响重金属形态的最重要 因素^[6]; DOC 通过与重金属形成络合物而影响其有 效性/毒性^[7]。迄今为止,大部分关于土壤溶液性质对 重金属植物毒性影响的研究是采用溶液培养的方法 而非真实的土壤培养^[5,8]。Li 等^[5]采用模拟的土壤溶 液来研究阳离子(K⁺、Na⁺、Mg²⁺、Ca²⁺)和 pH 对 Ni 的大麦根伸长的影响,发现溶液中 Mg²⁺、Ca²⁺表现 出对大麦根伸长的保护效应。而真实的土壤溶液介质 远比水培环境复杂,其中包括重金属在土壤固-液两 相之间的动态平衡等。Weng 等^[6]以营养液和土壤为 介质,研究 pH 对 Ni 在植物体内积累的影响,结果 显示在溶液培养条件下 pH 与基于 Ni²⁺ 的 EC50 呈 负相关,而在土壤介质中,pH 与基于外源 Ni²⁺ 阈值 呈正相关。因此,研究在土壤存在条件下土壤溶液性 质对水溶性 Ni 毒性影响及主控因子是非常必要的。

本实验选取 17 个具有代表性的中国土壤样品,以 在我国广泛种植的西红柿为供试植物,通过比较和确 定土壤溶液性质和水溶性Ni(土壤孔隙水和0.01 mol/L CaCl₂提取液中 Ni)的西红柿毒性阈值之间的量化表 征关系,并找出控制水溶性Ni 毒性的土壤溶液主控因 子,为我国的土壤质量环境风险评价提供参考依据。

* 通讯作者(ybma@caas.ac.cn)

基金项目:国家自然科学基金项目(40971262)和公益性行业(农业)科研专项项目(200903015)资助。

作者简介:张晓晴(1984—),女,湖北武汉人,博士研究生,主要从事土壤重金属形态和毒性研究。E-mail:friedchickenlg@126.com

1 材料与方法

1.1 供试材料

1.1.1 主要试剂和仪器 试剂:NiCl₂·2H₂O、CaCl₂·2H₂O、Ca(NO₃)₂·4H₂O、MgCl₂·6H₂O、Na₂SO₄,KCl,NH₄NO₃、KNO₃、KH₂PO₄均为分析纯试剂。

仪器:电感藕合等离子体-原子发射光谱(ICP-AES);电感藕合等离子体-质谱(ICP-MS);Formacs全碳 检测仪(Skalar Ltd., Breda, the Netherland);微电极仪器 (Thermo Fisher Scientific Inc., MA, USA)。

1.1.2供试植物和土壤 供试土壤:根据全国土壤 pH 及有机质分布频率的规律,选取 17 个具有代表 性的土壤样品,土壤采集深度为 0~20 cm。将土壤 样品混匀,风干,粉碎,过 2 mm 尼龙筛备用。供 试的 17 个土壤具体基本性质参见张洪涛等^[1]研究。

供试植物:西红柿品种为北京嘉禾种子公司提供的美粉一号(Lycopersicon esculentum)。

1.2 土壤样品制备及土壤溶液性质测定

1.2.1 土壤样品的制备 根据土壤样品 pH 的大小,在土壤中添加 8 个浓度梯度的 NiCl₂(mg/kg 烘干土),具体方法如下:pH < 5 的土壤,Ni添加量分别为 0、12.5、25、50、100、200、400、800 mg/kg 土壤;pH 为 5~7 的土壤,添加量分别为 0、25、50、100、200、400、800、1 600 mg/kg 土壤;pH > 7 的土壤,添加量分别为 0、37.5、75、150、300、600、1 200、2 400 mg/kg 土壤。所有处理的土壤样品均保持最大田间持水量培养两天,风干,粉碎,过 2 mm

尼龙筛备用(每个处理土样重复3次)。

1.2.2 土壤溶液的测定 土壤孔隙水(PW)的提 取采用离心浸提的方法^[9]。对于每个处理,装入大约 25g干土到注射器内部,根据50cm土壤水吸力的 土壤持水量(WHC),在25g干土中添加相应的去 离子水以达到土壤持水量后培养过夜(24 h),次日 低速离心机3500 r/min离心45 min,接着高速离心机 (15000 r/min)继续离心45 min,然后过0.45 μ mol/L的 滤膜,随即选择电感藕合等离子体-原子发射光谱 (ICP-AES)或电感藕合等离子体-原子发射光谱 (ICP-AES)或电感藕合等离子体-质谱(ICP-MS)测量各 土壤溶液参数(Na⁺、K⁺、Ca²⁺、Mg²⁺、S)以及Ni(PW-Ni) 的含量,采用pH计、电导率测定仪、Formacs全碳检 测仪分别测定土壤溶液 pH、电导率(EC)和DOC。

对于 CaCl₂提取态 Ni(CaCl₂-Ni) 采用 0.01 mol/L CaCl₂溶液提取,土样质量和 0.01 mol/L CaCl₂体积的 比值为 1:5,充分振荡混合后,以 3 500 r/min 的转 速离心振荡 30 min,过 0.45 μmol/L 的滤膜,随即测 量 Ni 的含量。

土壤溶液基本理化性质如表 1 ,其中土壤溶液 pH 5.1~8.4;电导率(EC)0.54~9.46 mS/cm;DOC 53~ 623 mg/L;Ca²⁺60.9~560 mg/L;K⁺0.8~53.6 mg/L; Mg²⁺13.1~354 mg/L;Na⁺10.1~1295 mg/L;S 52.6~ 313 mg/L。广州水稻土土壤溶液的 pH 和钙含量较高 是因为该土壤 pH 7.3(土水比为 1:5),碳酸钙含量为 0.15% 所致^[1],可能该土壤形成于石灰岩风化的洪积 或洪冲积物母质(石灰泥田)。

表 1 17 种供试土壤溶液的基本理化性质 Table 1 Properties of soil pore water samples used before being amended with Ni

地点	经纬度	pН	EC (mS/cm)	DOC (mg/L)	Ca (mg/L)	K (mg/L)	Mg (mg/L)	Na (mg/L)	S (mg/L)
灵山	39°55'N, 16°8'E	7.89	0.858	214	294	28.1	50	11.1	42
重庆	30°26'N, 06°26'E	7.88	0.976	235	187	2.4	15.8	20	75
张掖	38°56'N, 100°27'E	8.29	1.443	302	310	12	99.7	99.4	150
广州	23°10'N, 113°18'E	8.05	1.83	313	390	36	23.2	59.3	210
海伦	47°28'N, 126°57'E	7.41	0.543	131	114	0.8	28	20.6	46.5
海口	19°55'N, 111°29'E	6.47	1.081	98.4	60.9	53.6	20	17.6	3.66
杭州	30°26'N, 120°25'E	7.32	2.675	280	525	40	92.3	155	272
祁阳	26°45'N, 111°52'E	5.11	1.266	79.1	202	17.7	23.1	45.5	29.1
嘉兴	30°77'N, 120°76'E	7.48	2.502	163	369	8.19	85.7	155	125
公主岭	42°40'N, 124°88'E	8.15	0.926	226	246	4.4	22.8	15.7	75
廊坊	39°31'N, 116°44'E	8.3	0.835	143	140	18	21	33.1	24.2
呼伦贝尔	46°03'N, 22°03'E	7.6	9.46	239	322	20	354	1 925	690
德州	37°20'N, 116°29'E	8.17	2.192	207	295	3.2	108	285	120
杨凌	34°19'N, 108°0'E	8.2	0.845	52.6	176	6.53	13.1	10.1	32.1
石家庄	38°03'N, 114°26'E	8.25	2.347	235	560	6	72	50.4	255
乌鲁木齐	43°95'N, 87°46'E	8.35	2.021	294	341	40	63.7	433	315
郑州	34°47'N, 112°40'E	8.2	0.97	94.3	118	<2	27	55	48

壤

1.3 植物毒害试验方法

西红柿毒性试验参照 ISO 11269-2(1995)的标准 方法,取每个 Ni 处理土样约 650 g(干土)装入植物生 长钵内,3 次重复,保持最大持水量的 60% 培养 7 天后,在生长钵内种植预发芽(胚根<5 mm)的西红柿 种子,放置于温室内生长,生长条件为白天 14~16 h (28℃~36℃),夜间 8~10 h(16℃~26℃),整个西 红柿生长过程土壤湿度保持为 60%~70% 的最大持 水量,具体的培养方法见张洪涛等^[1],21 天后取西红 柿地上部分放入烘箱(70℃),烘 48 h 后称量西红柿茎 叶生物质量。

1.4 数据统计分析

采用对数-对数剂量效应(log-logistic)曲线拟合 水溶性 Ni 对西红柿的毒害^[10],方程如下:

$$Y = \frac{Y_0}{1 + e^{(b(X - M))}}$$
(1)

其中, *Y* 为相对西红柿地上部分的干重(%), *X* 为 log₁₀(测量水溶性 Ni 的浓度)。*Y*₀、*M*、*b* 为拟合的参数, *M* 为 log₁₀(EC10、EC50)。通过此方程可以求得 EC10、EC50 以及其 95% 的置信区间。

采用低浓度毒物刺激作用(hormesis)曲线拟合低 剂量水溶性 Ni 对西红柿的刺激作用^[11],方程如下:

$$Y = \frac{a + bX}{1 + \left[\frac{k}{100 - k} + \left(\frac{100}{100 - k}\right)\frac{bc}{a}\right]e^{d\ln(X/c)}}$$
(2)

其中, *Y* 为相对西红柿地上部分的干重(%), *X* 为测 量水溶性 Ni 的浓度, a、b、c、d 为拟合的参数, k为 10、50 时, 参数 c 便为 EC10、EC50 的值。由此 可以得到毒性刺激作用曲线和毒性阈值 EC10、 EC50。使用 Tablecurve 2D v5.01 软件拟合获得阈值 95% 的置信区间。

采用 SPSS 19.0(SPSS, Chicago, IL, USA)回归分 析毒性阈值与土壤溶液性质之间的关系,其回归方程 中相应系数的显著性水平为 $P \leq 0.05$ 。

2 结果与讨论

2.1 土壤水溶性 Ni 剂量-效应关系和毒性阈值

如图 1 和 2 所示,在 17 个土壤上,随着水溶性 Ni(PW-Ni 以及 CaCl₂-Ni)含量的增加,西红柿地上部 分生物量逐渐减少,Ni 对西红柿的剂量效应曲线在 17 个土壤上变化很大,说明了土壤性质的差异明显影 响了 Ni 对西红柿的毒性。PW-Ni 对西红柿的毒性阈值 EC10 和 EC50 变化范围分别为 0.08 ~ 3.84 mg/L(最大 值与最小值的比值为 50.6 倍)、1.02 ~ 8.91 mg/L(8.7 倍)(表 2);而对于 CaCl₂-Ni 的毒性阈值 EC10 和 EC50 变化分范围分别是 0.09 ~ 16.70 mg/kg(179.1 倍)和从 0.77 ~ 20.40 mg/kg(26.5 倍)(表 2)。说明 EC50 比 EC10 的变化范围小,土壤性质对其的影响也较小。在同样的土壤上,张洪涛等^[1]研究土壤外源 Ni 对西红柿的毒害,发现 EC50 最大值和最小值的比值达到 294 倍,远远大于水溶性 Ni 的毒害阈值的变化范围,说明了水溶性 Ni 缩小了毒性阈值的范围,能更好地体现土壤 Ni 对西红柿的生物有效性。在欧洲的土壤上,Rooney 等^[4]也发现水溶性 Ni 对西红柿的毒性阈值 EC50 变化范围小于外源 Ni 的毒性阈值,前者最大值与最小值的比值为 14 倍,而外源 Ni 为 54 倍。因此,与土壤外源 Ni 相比,水溶性 Ni 能更好地表达其生物有效性,然而水溶性 Ni 的阈值变化大于 8.7 倍,表明土壤性质对水溶性 Ni 的毒性仍有重要的影响。

由图 1 和 2 可以看出,大部分土壤中西红柿的生 长与 Ni 剂量之间的关系能用 log-logistic 剂量效应曲 线很好地拟合。而在海口砖红壤上,低剂量的 Ni 对 西红柿的生长显示出刺激作用,西红柿的生物量最大 值分别达到对照处理的 132%,此时,土壤上的剂量 效应关系可以用毒物刺激模型(Hormesis)很好地拟 合。目前已有一些文献报道了低剂量 Ni 对西红柿茎 叶生长的刺激作用^[1,4],这种毒物刺激作用已引起了 广泛的关注。郭雪雁等^[12]综述了低剂量毒物刺激作 用的机理,即过度补偿、矫正过度以及 DNA 损伤修 复。然而目前仍然没有被普遍接受的机理。在本试验 中,其他土壤并没有显示低剂量的刺激作用,因此对 于重金属的植物刺激作用仍需进一步的研究。

2.2 土壤溶液性质与毒性阈值的回归模型

通过回归分析土壤水溶性 Ni 的毒性阈值(EC10、 EC50)和土壤溶液性质(pH、EC、K⁺、Na⁺、Ca²⁺、 Mg²⁺、S、DOC)之间的关系,可以得出简单和多元的 回归方程(表 3)。影响土壤 PW-Ni 对西红柿毒害阈值 大小的重要因子是 K⁺、Mg²⁺、S(方程 3 和 5),包含 这 3 个因子的回归方程能分别解释 72%、71% 的土 壤 EC10、EC50 的变异。当进一步考虑其他因子对 PW-Ni 的毒性阈值影响时,回归方程的决定系数(*R*²) 分别提高到 0.86 和 0.84,这说明了其他因子对 PW-Ni 的毒性也存在一定的影响,利用这些土壤溶液性质可 以较好预测 PW-Ni 的植物毒性阈值。

与 PW-Ni 相比, 土壤溶液性质对 CaCl₂-Ni 的毒 性阈值影响较小, 在回归中没有发现能显著影响 EC50 的土壤溶液主控因子,同时包含所有溶液性质 的回归方程决定系数也较小(表 3), 说明土壤孔隙水 的理化性质不能够更好地预测 CaCl₂-Ni 对西红柿的 毒性。这可能由于这两种水溶态 Ni 提取过程的不同

	DW	N:	(-0)	NI:
也只	PW	-1N1	CaCI	l2-IN1
	EC10(mg/L)	EC50(mg/L)	EC10(mg/kg)	EC50(mg/kg)
灵山	1.36 (0.87 ~ 2.13)	5.01 (4.27 ~ 5.88)	2.65 (1.86 ~ 3.77)	7.82 (6.83 ~ 8.95)
重庆	0.72 (0.63 ~ 0.83)	2.98 (2.85 ~ 3.12)	2.41 (1.91 ~ 3.04)	5.93 (5.53 ~ 6.37)
张掖	0.90 (0.18 ~ 4.45)	3.15 (1.49 ~ 6.64)	1.44 (0.39 ~ 5.35)	3.02 (1.82 ~ 5.03)
广州	0.08 (0.02 ~ 0.24)	1.30 (0.84 ~ 2.00)	0.09 (0.01 ~ 0.61)	1.98 (0.86 ~ 4.56)
海伦	0.63 (0.25 ~ 1.62)	1.57 (0.98 ~ 2.49)	2.61 (1.49 ~ 4.58)	7.94 (6.12 ~ 10.29)
海口	3.84 (0.72 ~ 20.36)	8.91 (3.03 ~ 26.23)	16.70*(15.62~17.78)	20.40 * (18.72 ~ 22.09)
杭州	1.54 (1.05 ~ 2.26)	3.58 (2.94 ~ 4.37)	2.68 (1.56 ~ 4.60)	6.23 (4.86 ~ 7.99)
齐图日	0.84 (0.43 ~ 1.64)	1.95 (1.45 ~ 2.63)	2.09 (1.04 ~ 4.18)	4.85 (3.63 ~ 6.49)
嘉兴	1.63 (0.69 ~ 3.87)	4.02 (2.64 ~ 6.11)	3.23 (1.54 ~ 6.78)	7.50 (5.34 ~ 10.54)
公主岭	0.39 (0.05 ~ 2.85)	2.35 (0.66 ~ 8.31)	0.85 (0.37 ~ 1.94)	3.63 (2.05 ~ 6.43)
廊坊	1.01 (0.580 ~ 1.77)	3.90 (3.11 ~ 4.88)	1.17 (0.91 ~ 1.50)	2.59 (2.30 ~ 2.91)
呼伦贝尔	0.25 (0.01 ~ 4.21)	4.04 (1.16 ~ 14.09)	0.42 (0.04 ~ 4.94)	5.72 (2.11 ~ 15.52)
德州	0.73 (0.17 ~ 3.19)	7.24 (3.80 ~ 13.79)	0.60 (0.22 ~ 1.63)	3.13 (1.90 ~ 5.16)
杨凌	0.53 (0.17 ~ 1.61)	1.22 (0.78 ~ 1.93)	0.33 (0.14 ~ 0.77)	0.77 (0.50 ~ 1.18)
石家庄	0.34 (0.13 ~ 0.90)	1.51 (1.01 ~ 2.27)	0.57 (0.18 ~ 1.84)	1.26 (0.90 ~ 1.74)
乌鲁木齐	0.41 (0.21 ~ 0.77)	1.02 (0.81 ~ 1.28)	0.34 (0.16 ~ 0.75)	0.85 (0.65 ~ 1.10)
郑州	0.43 (0.02 ~ 9.86)	6.09 (1.22 ~ 30.34)	0.44 (0.12 ~ 1.58)	3.12 (1.58 ~ 6.16)

表 2 17 种土壤水溶性 Ni 对西红柿生长的毒性阈值 Table 2 Taviaity thresholds measured by tomate short for PW Ni (mg/L) and CaCL Ni (mg/La) for 17 Chinase soils

注:括号内数据表示为毒性阈值 95%的置信区间;*表示西红柿生长的土壤上具有 Hormesis 效应; EC10 和 EC50 分别为与对照 相比西红柿地上部分生物量减少 10% 与 50% 时,土壤孔隙水或 CaCl2提取液中 Ni 的浓度(PW-Ni 或 CaCl2-Ni),下同。

	表 3	基于土壤溶	液性质和西红柿生	长 Ni 毒害阈值的简	单和多元回归	方程	
Table 3	Simple and multiple line	ar regressions b	etween soluble Ni tox	city thresholds and soi	l pore water chen	nistry from tomate	o shoot bioassay

介质	编号	R^2	回归方程(n = 14)
PW-Ni	1	0.86	$EC10 = 0.20 + 0.039 * \text{ K}^{+} - 0.000 11S + 0.018 \text{Mg}^{2+} - 0.006 6\text{Ca}^{2+} + 0.95EC - 0.005 4\text{Na}^{+} - 0.002 3\text{DOC} + 0.082 \text{pH}$
	2	0.84	$EC10 = 0.60 + 0.036^{**} \text{ K} + 0.017^{*} \text{Mg}^{2+} - 0.007 7^{**} \text{ Ca}^{2+} + 1.1^{*} \text{ EC} - 0.005 7^{**} \text{ Na}^{+}$
	3	0.72	$EC10 = 0.51 + 0.040^{**} K - 0.0076^{**}S + 0.013^{*} Mg^{2+}$
	4	0.84	$EC50 = -4.8 + 0.076K - 0.029S + 0.035 Mg^{2+} - 0.009 4Ca^{2+} + 3.1EC - 0.002 8 Na^{+} + 0.007 7 DOC + 0.67 pH$
	5	0.71	$EC50 = 1.7 + 0.083^{**}K - 0.022^{**}S + 0.055^{**}Mg^{2+}$
CaCl ₂ -Ni	6	0.82	$EC10 = 4.2 + 0.16 * K^{+} + 0.024S + 0.070 Mg^{2+} - 0.042 Ca^{2+} + 4.6 EC - 0.033 Na^{+} - 0.008 0 DOC - 0.14 pH^{-1} + 0.024S + 0.070 Mg^{2+} - 0.042 Ca^{2+} + 0.024S Na^{+} - 0.008 0 DOC - 0.14 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.024S Na^{+} - 0.008 0 DOC - 0.014 pH^{-1} + 0.008 0 DOC - 0$
	7	0.74	$EC10 = 1.8 + 0.14*K - 0.031**Ca^{2+} + 6.0*EC - 0.020*Na^{+}$
	8	0.74	$EC50 = 11 + 0.15K^{+} + 0.007\ 3S + 0.077Mg^{2+} - 0.041Ca^{2+} + 4.5EC - 0.032Na^{+} + 0.003DOC - 0.86pH$

注: *, **:分别表示回归方程中相应系数的显著性水平 P<0.05 和 P<0.01。

导致其浓度的差异。在本试验中当 Ni 的添加量最高时,所有的土壤样中 PW-Ni 的浓度明显大于 CaCl₂-Ni 的浓度(图 3)。Degryse 等^[13]在研究孔隙水和 CaCl₂ 提取液中重金属浓度时发现,PW-Ni 的浓度会大于 CaCl₂-Ni 的浓度,这可能由于在 CaCl₂溶液提取 Ni 的过程中,土壤溶液中高浓度的 Ca²⁺ 会引起 DOC 絮凝沉淀,使得 Ni-DOC 形态减少,因此 CaCl₂提 取液中溶解性有机质与 Ni 络合物的浓度要比其在 孔隙水中低,最终导致 CaCl₂-Ni 的浓度小于 PW-Ni 的浓度。

2.3 土壤溶液主控因子

由于土壤孔隙水的性质能更准确预测 PW-Ni 的

图 3 土壤 PW-Ni 和 CaCl₂-Ni 浓度的比值(Ni 的最大添加量) Fig. 3 The ratio of PW-Ni and CaCl₂-Ni (due to the largest dosage of added Ni)

毒性阈值,方程3、5表明K⁺、Mg²⁺、S是控制PW-Ni 西红柿毒性阈值的重要因子。它们与阈值单相关性很 差(图4),在多元回归方程中,K⁺、Mg²⁺与毒性阈值 显著正相关, S 与毒性阈值显著负相关, 说明 PW-Ni 的毒性同时受到这 3 个因素的影响, 利用 K⁺、Mg²⁺、 S 可以很好地预测 PW-Ni 对西红柿的毒性。

图 4 土壤孔隙水性质(K⁺、Mg²⁺、S、pH)和 PW-Ni 毒性阈值(EC10、EC50)之间的关系 Fig. 4 Relationships between soil solution properties (K⁺, Mg²⁺, S and pH) and the effective concentrations of PW-Ni that caused 10% or 50% inhibition (EC10 or EC50) obtained from tomato shoot assays

K⁺ 是影响 Ni 阈值变化的重要因子, Ni 对西红柿 生长的毒性随着 K⁺ 浓度的增加而降低, K⁺ 的浓度 每增加 10 mg/L, EC10 和 EC50 分别增加 0.4 mg/L, 0.83 mg/L(方程 3 和 5)。在水培条件下,许多研究^[5,14] 结果显示出 K⁺ 有降低 Ni 对大麦根伸长毒害的趋势, 效果不显著。产生这种结果的原因可能是土壤环境和 水培条件的不同,另一方面也可能是西红柿和大麦品 种间对 K⁺ 吸收、转运、利用效率方面的差异导致^[15]。

在水培和水体环境中也有研究发现 Mg^{2+} 能有效 降低 Ni 对植物和水生鱼类的毒害^[5,16],如 Li 等^[5]研 究了营养液中 Mg^{2+} 对 Ni 的大麦毒害的影响,结果 发现当 Mg^{2+} 浓度在 0~4 mmol/L 时, EC50 随 Mg^{2+} 浓度增加而增加。

S 对 Ni 的毒性影响比较复杂,其机理目前还不 清楚,有可能是以下的原因:通过相关性分析,发现 S 与 Ca²⁺、Na⁺、EC 的相关均达到 0.01 水平上的显 著,相关系数分别为 0.81、0.67、0.74,这说明 S 对 EC10 的作用也间接受到这 3 个因素的影响。进一步 偏相关分析,发现 S 与 Na⁺ 有极强的相关。本试验 的植物西红柿(*Lycopersicon esculentum*)属于盐中等 敏感的作物^[20],易受盐渍化的影响,土壤溶液中过 高的 EC 或 Na⁺ 会降低西红柿的生长速度和产量^[21]。 土壤溶液中无机 S,主要以硫酸盐的形式存在,当其 浓度增加时,溶液的渗透压相应增加,由于其与 Na⁺ 的极强相关性,Na⁺ 浓度也可能随之增加,这导致西 红柿生物量减少从而间接影响水溶性 Ni 的毒性。同 时孔隙水中有机 S 是组成 DOC 的重要元素,其主要 作用体现在 DOC 对 Ni 形态的影响。由于土壤性质 的差异,S 的不同来源会导致其对水溶性 Ni 毒性作 用差异很大,因此 S 对孔隙水中 Ni 的毒性受到土壤 溶液中其他因素的影响。

在本试验中,土壤溶液中 Ca^{2+} 与Ni的毒性阈值 相关性较差,仅在方程2中显著。在水培或水体环境 中均发现 Ca^{2+} 能在一定程度上降低Ni的生物毒性,如 对大麦根伸长、虹鳟鱼Ni的毒性有缓解作用^[5,16],Hoang 等^[17]发现当以 $CaCO_3$ 表示的硬度在20~150 mg/L范 围内,Ni 对黑头呆鱼的毒性随硬度增加而降低。产 生这些差异的原因可能是有些土壤溶液中 Ca^{2+} 、Mg²⁺ 的浓度远远超过水培试验设定的浓度范围,尤其对于 高剂量添加Ni的土壤,随着外源Ni的增加,土壤溶

壤

液中 Ca^{2+} 、 Mg^{2+} 浓度迅速增加,以石家庄的土壤为 例,当土壤中外源 Ni 添加量变化为 0~2 400 mg/kg, 土壤溶液中 Ca^{2+} 、 Mg^{2+} 浓度的变化范围分别为 560~ 5 375 mg/L(9.6 倍的差异),72~489 mg/L(6.8 倍的差 异)。此时除了考虑 Ca^{2+} 与 Ni²⁺ 竞争生物体表面的吸 附位点,降低 Ni²⁺ 在生物体表面的吸附从而降低其 毒性,同时高浓度的离子也会增加细胞膜的透性,使 细胞膜上的 Ni²⁺ 更容易进入细胞内从而增加 Ni 的生 物有效性^[18–19],这些多重作用相互抵消使得 Ca^{2+} 与 阈值甚至出现负相关。

在土壤溶液中,DOC 能够降低重金属的生物有 效性^[17,22],然而在淋洗和非淋洗的土壤中,DOC 并 不是影响孔隙水中 Ni 毒性阈值的重要因子,这可能 由于在土壤溶液中,只有少量的 Ni 与 DOC 络合, 这部分形态的 Ni 占总体水溶性 Ni 的比例小于 20%^[23]。因此,DOC 对水溶性 Ni 的毒性影响较小, 其毒性可能主要受到其他形态 Ni 的影响,如自由 Ni²⁺、NiHCO₃^[5]。

在本试验中,虽然回归结果显示 pH 不是影响孔 隙水中 Ni 西红柿毒性的重要因子,单独的 pH 与毒 性阈值也没有很好的线性相关(图 4)。而在同样的土 壤上,张洪涛等^[1]研究土壤理化性质与外源 Ni 的毒 性关系,发现 pH 是影响 Ni 对西红柿毒性的主控因 子。这种差异可能由于 pH 是影响 Ni 在土壤固相和 液相分配的最重要土壤理化性质,同时土壤的固-液 分配系数随着 pH 的变化而波动^[24],因此 pH 是影响 土壤中外源 Ni 毒性的主控因子。在土壤溶液中, pH 也会对水溶性 Ni 的毒性产生一定的影响:当 pH < 7, H⁺主要与 Ni²⁺竞争生物配体或者降低细胞膜的负电 势从而降低 Ni 在生物配体表面的吸附,使得毒性随 着 pH 的增加而增加;当 pH > 7 时,自由 Ni^{2+} 分布 减少,NiHCO3先增加然后降低,而其他形态的 Ni 比例增加如 Ni-DOC、NiCO3,这样使得 Ni 的毒性随 pH 的增加而降低^[5]。Lock 等^[14]也发现当 pH 在 4.1~ 7.5 范围内时, H^+ 对 Ni²⁺ 的毒性影响不显著。因此, 本试验的土壤样品 pH 范围很大, pH 与水溶性 Ni 的 毒性阈值之间的关系线性不显著。

3 结论

(1) 土壤溶液性质对水溶性Ni(PW-Ni和CaCl₂-Ni)的 西红柿毒性阈值影响显著,在17个土壤上PW-Ni的 毒性阈值的变化范围较之CaCl₂-Ni小,但是阈值的最 大值与最小值的比值也大于8.7,因此基于土壤水溶 性Ni的植物毒性阈值也不能为重金属风险评价提供 精确的标准。

(2) 土壤溶液中 K⁺、Mg²⁺、S 也是影响 PW-Ni 毒性阈值变化的重要因子 ,基于这 3 个因子的回归方 程能较好预测土壤 PW-Ni 对西红柿的毒害效应 ,这些 毒理数据为土壤中 Ni 的生态风险评价提供了有效的 参考依据。

参考文献:

- [1] 张洪涛,李波,刘继芳,马义兵,韦东普.西红柿镍毒害的土壤主控因子和预测模型研究[J].生态毒理学报, 2009,4(4):569-576
- [2] 李波,马义兵,刘继芳,韦东普,陈世宝,张洪涛,郭雪
 雁.西红柿铜毒害的土壤主控因子和预测模型研究[J].
 土壤学报,2010,47(4):665-673
- [3] Rooney CP, Zhao FJ, McGrath SP. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 726–732
- [4] Rooney CP, Zhao FJ, McGrath SP. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation[J]. Environmental Pollution, 2007, 145(2): 596–605
- [5] Li B, Zhang X, Wang XD, Ma YB. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6): 1 760–1 766
- [6] Weng LP, Lexmond TM, Wolthoorn A, Temminghoff, van Riemsdijk WH. Phytotoxicity and bioavailability of nickel: Chemical speciation and bioaccumulation[J]. Environmental Toxicology and Chemistry, 2003, 22: 2 180–2 187
- [7] Xue HB, Jansen S, Prasch A, Sigg L. Nickel Speciation and Complexation Kinetics in Freshwater by Ligand Exchange and DPCSV[J]. Environmental Science & Technology, 2001, 35(3): 539–546
- [8] 王学东,马义兵,华珞,张璇.铜对大麦(Hordeum vulgare)的急性毒性预测模型——生物配体模型[J].环境 科学学报,2008,28(8):1704–1712
- [9] Thibault DH, Sheppard MI. A disposable system for soil pore-water extraction by centrifugation[J]. Communications in Soil Science and Plant Analysis, 1992, 23(13/14): 1 629–1 641
- [10] Haanstra L, Doelman P, Oude Voshaar JH. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2): 293–297
- [11] Schabenberger O, Tharp BE, Kells JJ, Penner D. Statistical tests for hormesis and effective dosages in herbicide dose response[J]. Agronomy Journal, 1999, 91(4): 713–721
- [12] 郭雪雁, 马义兵, 李波. 陆地生态系统中低剂量毒物刺激作用及拟合模型的研究进展[J]. 生态学报, 2009, 29(8): 4 408-4 419
- [13] Degryse F, Smolders E, Parker DR. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications — A review[J]. European Journal of Soil Science, 2009, 60(4): 590–612

- [14] Lock K, Van Eeckhout H, De Schamphelaere KAC, Criel P, Janssen CR. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (*Hordeum vulgare*)[J]. Chemosphere, 2007, 66(7): 1 346–1 352
- [15] 邹春琴, 李振声, 李继云. 植物高效利用 K 素资源的研 究进展[J]. 中国生态农业学报, 1999, 7(3): 10–14
- [16] Deleebeeck NME, De Schamphelaere KAC, Janssen CR. A bioavailability model predicting the toxicity of nickel to rainbow trout (*Oncorhynchus mykiss*) and fathead minnow (*Pimephales promelas*) in synthetic and natural waters[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 1–13
- [17] Hoang TC, Tomasso JR, Klaine SJ. Influence of water quality and age on nickel toxicity to Fathead Minnows (*Pimephales Promelas*)[J]. Environmental Toxicology and Chemistry, 2004, 23(1): 86–82
- [18] Kinraide TB, Pedler JF, Parker DR. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium and low pH[J]. Plant and Soil, 2004, 259(1/2): 201–208
- [19] Wang P, Kopittke PM, De Schamphelaere KAC, Zhao FJ, Zhou DM, Lock K, Ma YB, Peijnenburg WJGM, McGrath

SP. Evaluation of an electrostatic toxicity model for predicting Ni²⁺ toxicity to barley root elongation in hydroponic cultures and in soils[J]. New Phytologist, 2011, 192(2): 414–427

- [20] Maas E, Hoffman G. Crop salt tolerance-Current assessment[J]. Journal of the Irrigation and Drainage Division, 1977, 103: 115–134
- [21] Gorai M, Neffati M. Germination responses of Reaumuria vermiculata to salinity and temperature[J]. The Annals of Applied Biology, 2007, 151(1): 53–59
- [22] Doig LE, Liber K. Influence of dissolved organic matter on nickel bioavailability and toxicity to *Hyalella azteca* in water-only exposures[J]. Aquatic Toxicology, 2006, 76(3/4): 203–216
- [23] Nolan AL, Ma YB, Lombi E, McLaughlin MJ. Speciation and isotopic exchangeability of Ni in soil solution[J]. Journal of Environmental Quality, 2009, 38(2): 485–492
- [24] Sauvé S, Hendershot W, Allen HE. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter[J]. Environmental Science & Technology, 2000, 34(7): 1 125-1 137

The Influence of Soil Solution Properties on Soluble Nickel Toxicity to Tomato Shoot

ZHANG Xiao-qing¹, WEI Dong-pu², LI Bo², MA Yi-bing^{2*}, HUANG Zhan-bin¹

(1 School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing
 100083, China;
 2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
 100081, China)

Abstract: The influence of soil pore water properties on soluble nickel (Ni) phyto-toxicity based on soil pore water and 0.01 mol/L CaCl₂ extraction was investigated using 17 Chinese soils. Results showed that the effective concentrations of Ni in soil pore water (PW-Ni) that caused 50% inhibition (EC50) varied widely from 1.02 to 8.91 mg/L, represented 8.7 folds differences between the maximum and minimum values. Similarly, the EC50 of CaCl₂-Ni varied widely from 0.77 to 20.40 mg/L, represented 26.5 folds differences. These results indicated that soil solution properties greatly influenced the toxicity thresholds of soluble Ni in a wide range of soils. The K⁺, Mg²⁺ and S were three important factors controlling the influence of PW-Ni toxicity and multiple regression results showed that they could better predict the toxicity threshold with the coefficient of determination (R^2) of 0.71. When incorporating other parameters (dissolved organic carbon (DOC), pH, electrical conductivity (EC), Ca²⁺ and Na⁺) into the regression models, the R^2 for EC50 increased to 0.84, which implied that other factors also influenced the PW-Ni toxicity and these soil pore water chemistry could predict PW-Ni toxicity on tomato shoot.

Key words: Soil, Nickel, Phytotoxicity, Tomato