典型黑土区不同坡位剖面土壤速效钾空间分布规律研究^①

张少良¹,张兴义^{2*},刘晓冰²,宁玉翠¹,张志强¹

(1 东北农业大学资源与环境学院,哈尔滨 150030;2 中国科学院东北地理与农业生态研究所,哈尔滨 150081)

摘 要:本研究系统地揭示了典型黑土区典型样带多个剖面 0~60 cm 土壤速效钾横向和纵向分布规律。研究结 果表明:研究区各样带土壤速效钾含量处于 97.5~395.5 mg/kg 之间,各样带土壤速效钾平均值一般是从表土层 0~20 cm 向 20~40 cm 处减小,然后逐渐向 50~60 cm 处增大。其变异系数和极差一般从表土层 0~20 cm 向 50~60 cm 处逐 渐降低。土壤速效钾总体沿坡向向下呈下降趋势,同一土带各土层相隔越近速效钾沿坡向变化趋势越接近。各样带土 壤剖面 0~60 cm 土层速效钾沿坡向变异均是从坡顶变异程度最大(*CV* = 23%~28%),至坡肩变异程度相对较小(*CV* = 12%~14%)。剖面土壤速效钾变化趋势整体上从 0~20 cm 向深土层先逐渐减少而后增加,通常在 20~40 cm 出现最 低值。

关键词:黑土;样带;剖面;速效磷;土壤侵蚀 中图分类号:S158.2

东北黑土区是我国重要商品粮生产基地,其土壤 肥力的维持和提升关系到国家粮食安全,关系到该区 域农业的可持续发展。土壤养分是土壤肥力的重要组 成部分,研究其空间分布规律可为土壤养分管理和农 业生态环境保护和治理等提供依据^[1-2]。当前,关于 黑土区土壤养分空间分布规律的研究主要集中在耕 层 0~20 cm^[3-5], 而关于剖面土壤养分的空间分布 规律研究还鲜见报道。据报道东北黑土区作物根系 在 0~70 cm 处土层左右均有分布 而且根密度在 0~ 45 cm 处土层左右占优势^[6]。研究表明人为剥离后 20 cm 耕层土壤合理施肥种植大豆和玉米仍然可以维持一 定产量或保持较高产量^[7],因此只分析耕层 $(0 \sim 20 \text{ cm})$ 土壤养分分布特征和变化规律等不能很好地反映黑 土区耕地资源质量现状。同时,由于土壤养分迁移 受水流在重力和土壤颗粒对其阻力的双重作用下不 定向运动,致使不同坡位剖面土壤养分含量空间分 布存在差异^[8]。因此,研究不同坡位剖面土壤养分 空间分布规律对指导农业生产和促进农业可持续发 展有重要意义。钾素是植物生长的三大主要营养元 素之一,是作物生长必需的营养成分,尤其土壤中 的速效钾是当季作物可以获取的主要养分资源,它 标志着目前乃至近期内可供植物吸收利用的钾的数 量,是衡量土壤钾素养分供应能力的现实指标^[9], 研究其在土壤中的分布规律对指导农业生产有重要 的现实意义^[10]。

本研究通过在典型黑土区典型坡面选择 4 条典 型样带,并在样带上均匀设计剖面位置,分层采集剖 面 0~60 cm 土壤样品,系统分析不同坡位、不同剖 面土壤速效钾空间分布规律,旨在为黑土区农田土壤 养分管理提供依据。

1 材料与方法

1.1 研究区概况

研究区位于黑龙江省海伦市前进乡光荣小流域 (47°21′12.61″E,126°50′01.42″N),地形为漫川漫岗, 土壤类型为典型黑土中的黄土质黑土,其基本理化性 状见表1。原始自然植被为草原化草甸植物,俗称"五 花草塘",当前主要以玉米大豆轮作为主,一年一熟 制。该区位于温带,属寒温带大陆性季风气候区,冬 季寒冷干燥,夏季温热多雨,年均气温 1.5℃,极端 最高温度为 37℃,极端最低温度为-39.5℃,多年平 均降水量 530 mm,年均有效积温2450℃,年均日照 时数为 2600~2800 h,无霜期为125 天,地下水水 位埋深 10~20 m。

* 通讯作者(zhangxy@neigaehrb.ac.cn)

基金项目:国家自然科学基金青年项目(41101262)和东北农业大学博士启动基金项目(2012RCB03)资助。

作者简介:张少良(1980—),男,黑龙江五常人,博士,副教授,主要从事黑土农田景观生态过程研究。E-mail: hljzsl@aliyun.com

Table 1 Soil chemical and physical properties							
土层深度 (cm)	有机质 (g/kg)	体积质量 (g/cm ³)	总孔隙度 (%)	田间持水量 (g/kg)	饱和含水量 (g/kg)	枯萎含水量 (g/kg)	
0~20	42.1	1.27	52.1	244	423	121	
$20 \sim 40$	28.4	1.19	55.1	244	442	134	
$40 \sim 60$	18.6	1.21	54.3	234	436	142	

表1 研究区土壤基本理化性状

1.2 试验设计

本研究于 2012 年秋在光荣小流域内选择了一处 典型的面向南方向的坡面,沿着坡向分别设计了 4 条样带 A、B、C 和 D, 分别沿着样带从坡顶向坡脚 以间隔 70~100 m 选择有代表性位置挖掘土壤剖面 $(0 \sim 60 \text{ cm})$,并分层收集 $0 \sim 20$ 、 $20 \sim 30$ 、 $30 \sim 40$ 、 40~50和50~60 cm 土壤样品。耕层 0~20 cm 土样, 采用五点法采集,混均后四分法收集装袋,并用手持 高精度 GPS 定位中心点坐标; 20~30、30~40、40~ 50 和 50 ~ 60 cm 土壤样品为分层收集。所有样品均 在阴凉处风干,装瓶待用。样带 A 包括坡顶 a1、坡 肩 a2、坡背 a3、坡背 a4 和坡脚 a5 共 5 个土壤剖面 (a5 样点下方为林地,故未采取样点);样带 B 为复合 坡,包括坡顶 b1、坡肩 b2、坡背 b3、坡背 b4、坡肩 b5、坡背 b6 和坡脚 b7 共 7 个土壤剖面(b7 样点下方 为林地,故未采取样点);样带C为复合坡,包括坡 顶 c1、坡肩 c2、坡背 c3、坡背 c4、坡肩 c5、坡背 c6、 坡脚 c7 和坡趾 c8 共 8 个土壤剖面; 样带 D 包括 a1、d1、b1 和 c1 共 4 个剖面, 如图 1 所示。

Fig. 1 Distribution of sample transects in study area

1.3 测定方法

1.3.1 速效钾测定 火焰光度法测定^[11]。 速效钾采用 NH₄OAc 浸提,

1.3.2 土壤侵蚀计算 研究区整个小流域土壤侵 蚀空间分布图已经通过修正后的完全基于 ArcGIS 的 USLE 模型计算获得,如图2所示,此部分研究内容 已经发表在水土保持通报^[12],然后通过 ArcGIS 软件 包提取对应的土壤侵蚀量数据。

图 2 研究区土壤侵蚀空间分布格局图 Fig. 2 Soil erosion distribution in study area

10~15

1.4 数据分析

常用参数在 Excel 2003 中计算,方差分析在 SPSS 12.0 中进行,作图在 Sigmaplot10.0 和 ArcGIS10.0 中 完成。

2 结果与分析

2.1 剖面土壤速效钾纵向空间变化规律

研究区样带土壤速效钾含量处于 97.5~395.5 mg/kg 之间(表 2), 其中 0~20、20~30、30~40、40~50、 50~60 cm 土层速效钾含量分别处于 119.8~395.5、 128.1 ~ 357.6、109.9 ~ 294.6、97.5 ~ 289.3 和 115.7 ~278.0 mg/kg 之间。各样带土壤速效钾平均值一般是 从表土层 0~20 cm 向 20~40 cm 减小, 然后向 50~

表 2 剖面土壤速效钾含量描述性分析

第46卷

	Table 2 Description of RAK in soil profiles							
样带	剖面数	样带垂直投影长 (m)	剖面深度 (cm)	平均值 (mg/kg)	最大值 (mg/kg)	最小值 (mg/kg)	极差 (mg/kg)	变异系数 (<i>CV</i>)
Α	5	315	$0\sim 20$	273.2	395.5	191.2	204.3	0.32
		$20\sim 30$	244.1	357.6	166.5	191.1	0.34	
			$30 \sim 40$	210.8	294.6	136.2	158.4	0.31
			$40\sim50$	237.3	289.3	148.2	141.1	0.23
			$50\sim 60$	230.8	278.0	190.4	87.6	0.15
В	7	530	$0\sim 20$	200.0	293.8	119.8	174.0	0.30
			$20 \sim 30$	179.9	207.2	128.1	79.0	0.15
			$30 \sim 40$	182.0	224.6	109.9	114.7	0.21
			$40 \sim 50$	186.3	212.8	122.0	90.8	0.17
			$50 \sim 60$	211.9	246.0	181.6	64.4	0.10
С	8	761	$0\sim 20$	203.8	297.7	179.2	118.5	0.19
		$20 \sim 30$	179.5	252.7	131.9	120.8	0.24	
			$30 \sim 40$	188.4	246.6	133.3	113.3	0.21
			$40 \sim 50$	190.5	246.4	97.5	148.8	0.27
			$50 \sim 60$	201.3	254.7	115.7	139.1	0.23
D	4	294	$0 \sim 20$	266.8	395.5	119.8	275.7	0.48
			$20 \sim 30$	239.4	357.6	160.8	196.8	0.39
			$30 \sim 40$	193.8	294.6	109.9	184.8	0.41
			$40 \sim 50$	184.5	261.5	97.5	164.0	0.47
			$50 \sim 60$	204.8	271.6	115 7	155.9	0.32

60 cm 逐渐增大。其变异系数和极差除样带 C 外,均 基本呈从表土层 0~20 cm 向 50~60 cm 处逐渐降低 趋势。

各样带除剖面 a3-坡背、b1-坡顶和 c7-坡脚外, 土壤速效钾变化趋势均由 0~20 cm 较高处向深土层 逐渐降低,或先降低后再升高,通常靠近表土层波动 相对较大,深层波动相对较小,相邻坡面变化趋势相 近(图 3)。样带 A 坡顶 a1 剖面,速效钾由 0~20 cm 向下逐渐降低; a3 由 0~20 cm 向下逐渐增加至 40~ 50 cm 后降低; a2、a4、a5 由 0~20 cm 向下逐渐降 低至 30~40 cm 后 持续升高(a5)或升高后略又降低。 样带 B 和 C 相对 A 变化较为复杂,属于复合坡。样 带 B 剖面 b2、b4 和 b6 垂直变化规律相近,由表层 0~20 cm 向 20~30 cm 处降低,后又升高到 30~40 cm 处, 再降低到 40~50 cm 处后再次升高; b3、b5 和 b7 垂直变化规律相近由表层 0~20 cm 向 30~40 cm 处降低,然后持续升高至50~60 cm;b1 除 0~30 cm 土层外其他土层变化规律与 b3、b5 和 b7 相近。样带 C 剖面 c1 和 c2 变化趋势接近,从表层 0~20 cm 向 40~50 cm 逐渐降低; c3、c5 和 c8 垂直变化规律相近, 由 0~20 cm 向 20~30 cm 处升高, 然后向 50~60 cm 处降低; c4 和 c6 垂直变化规律相近, 由 0 ~ 20 cm 向 30~40 cm 处逐渐降低, 然后向 40~50 cm 处降低。 2.2 坡面土壤速效钾横向空间变化规律

样带 A、B、C 和 D 土壤速效钾含量总体沿坡向 向下呈下降趋势(图 4),样带 A 和 D 下降趋势变化幅 度相对较大,而样带 B 和 C 下降趋势幅度相对较小。 同一样带各土层相隔越近速效钾沿坡向变化趋势越 接近,其中靠近表层土壤波动较大,靠近深层土壤波 动相对较小,规律极其相似,尤其是 40~50 cm 和 50~60 cm 土层变化趋势基本相同。样带 A 和 D 剖 面 $0 \sim 40$ cm 各土层靠近坡顶和坡肩其速效钾含量较 高,样带 B 和 C 剖面 0~60 cm 各土层靠近坡顶其速 效钾整体较低,大部分土层速效钾在坡肩、坡脚、坡 趾处总体升高。各样带土层 30~40 cm 沿坡向变化相 对其他土层较缓和,其速效钾含量也基本处于其他土 层之间。各样带 40~50 cm 和 50~60 cm 土层沿坡向 变化规律基本一致,均是坡顶处较小,然后逐渐升 高,至坡肩处达到最高,然后逐渐下降,中间随坡 长变化不定向出现几次起伏,而后在坡脚或坡趾处 增高或降低。

各样带土壤剖面 0~60 cm 土层速效钾沿坡向变

220

100

400

距离 (m)

600

200

异趋势基本相近(图 5),均是从坡顶变异程度最大 从坡肩向坡背变异系数总体先增大再减小,直至坡 (23%~28%),至坡肩变异系数相对较小(12%~14%)。 足,后又在坡趾处升高。 В А 0~20 0~20 b1 剖面深度 (cm) 20~30 剖面深度 (cm) b2 20~30 h3 a1 30~40 30~40 a2 b4 a3 b5 40~50 40~50 a4 b6 a5 b7 50~60 50~60 0 100 200 300 400 500 600 0 100 200 300 400 500 600 速效钾含量 (mg/kg) 速效钾含量 (mg/kg) С D 0~20 0~20 c1 剖面深度 (cm) 20~30 c2 剖面深度 (cm) 20~30 c3 30~40 c4 30~40 a1 c5 40~50 b1 40~50 c6 **c**1 50~60 c7 50~60 d1 c8 0 100 200 300 400 500 600 0 100 200 300 400 500 600 速效钾含量 (mg/kg) 速效钾含量 (mg/kg) (A、B、C和D,分别代表样带号,下图同) 图 3 剖面土壤速效钾纵向空间变化趋势 Fig. 3 RAK vertical dynamics in soil profiles В 400 400 0~20 $0 \sim 20$ 速效钾含量 (mg/kg) 速效钾含量 (mg/kg) 20~30 20~30 30~40 30~40 300 300 - 40~50 - 40~50 50~60 50~60 200 200 100 100 01 Ŀ $0^{\frac{1}{2}}$ 0 200 400 600 800 0 200 400 600 800 距离 (m) 距离 (m) D 400 С 400 0~20 0~20 速效钾含量 (mg/kg) 20~30 20~30 速效钾含量 (mg/kg) 30~40 30~40 300 300 40~50 40~50 50~60 50~60 200 200

> 图 4 土壤速效钾沿坡面向下横向空间变化趋势 Fig. 4 RAK horizontal dynamics along down slope direction

800

100

0

200

400

距离 (m)

600

800

3 讨论

黑土矿物质组成一般在 0~10 cm 土层以水云母 居多,50~100 cm 土层则以水云母类及蒙脱类矿物 为主,水云母为云母脱钾后形成的次生矿物含有部分 研究区土壤速效钾处于 97.5~395.5 mg/kg 之间,特别 是 0~30 cm 土壤速效钾含量为 119.8~395.5 mg/kg, 土壤供钾能力处于较高水平[13]。通常可根据黑土区速 效钾含量丰缺(急缺: 30 mg/kg, 缺: 30~50 mg/kg, 中下: 50~100 mg/kg,中上: 100~150 mg/kg,好: 150~200 mg/kg,极好:>200 mg/kg^[14])来确定钾肥 施用量,研究区各土层除坡脚和坡趾处速效钾为50~ 100 mg/kg 外,其他坡位一般均高于 100 mg/kg,因 此研究区不缺钾,即钾肥不是当地作物产量的限制因 子,这与韩晓增等^[15]的研究结果一致。但是,在特 殊天气情况下(如干旱等),地势较低区域,适当施用 "钾肥还是必要的。通常认为秸秆还田有利于提高土壤 速效钾含量^[10],而研究区基本无秸秆还田措施,因 而不利于维持土壤速效钾的可持续性。

研究区土壤速效钾沿坡面向下总体有下降的趋势,在短坡上(A和D)下降幅度较大,在复合坡上(B和C)变化较复杂,这是由于黑土区特定地形引起的, 黑土区地形为漫川漫岗,地形起伏^[13],导致降水径 流、渗透、水蚀、耕作侵蚀等在不同坡位差异较大^[16]; 长坡复杂地形比短坡地形水分运动和土壤运动情况 复杂,加之速效钾溶于水易于波动,更增加其不确 定性^[17]。由于黑土区土壤黏重、透水性差,表层0~ 20 cm 土壤受施肥(当地施肥量通常 K 15 kg/hm²)、耕 作、有机质矿化、黏土矿物固定等因素影响较大, 同时由于其位于相对紧实透水性更差的犁底层(20~ 35 cm 左右)之上,其速效钾含量较高,且波动较大, 特别是坡顶速效钾含量较高(最高 395.5 mg/kg),可能 与坡顶土壤矿物易风化,土壤侵蚀和径流较少,以及 坡顶分解的少量脱落物有关。由于作物根系分布从表 层向深层逐渐减少,以0~45 cm 占优势^[6],其对土 壤养分的吸收量从上向下逐渐减少,加之受犁底层 对水肥的阻滞作用,因此,剖面土壤速效钾整体上 从0~20 cm 向深土层先逐渐减少而后增加,通常在 20~40 cm 出现最低值,而在 50~60 cm 相对其他土 层较高,主要是由于深土层土壤速效钾被作物吸收较 少,加之土壤母质富含丰富钾素矿物,和其不断风化的 结果。20~40 cm 土层速效钾相对波动较小,规律性一 般不同于深土层规律,相当于过渡层,而 40~50 cm 和 50~60 cm 土层土壤速效钾变化规律相近,除样带 B 外均达显著或极显著水平,主要是因为受外界因素 影响较少。

通常认为土壤侵蚀与土壤速效钾呈显著负相关 关系^[18],本研究未发现研究区水蚀造成的土壤侵蚀 与各土层速效钾含量之间有显著相关关系(表 3),而 且部分为正相关或负相关,分析认为是由于研究区坡 面侵蚀包括降雨侵蚀、耕作侵蚀和风蚀等,特别是坡 顶位突兀处耕作侵蚀对坡面侵蚀影响较大^[19]。研究 区水蚀主要发生在坡背,特别是坡度较陡区域(图 6), 由于研究区样带 A 和 D 坡顶多分布着平整的土地, 其水蚀和耕作侵蚀都相对较少,因此土壤速效钾含量 在坡顶相对其他位置土壤养分含量较高,而位于样带 B和C坡顶的剖面 b1和 c1 同时属于样带 D的坡背 和坡脚,受水蚀和耕作侵蚀强度都相对较大,因此其 侵蚀量也较大。而在坡肩、坡脚、坡趾处地势相对平 坦,虽然以沉积为主,但因速效钾易随径流运动,因 此速效钾含量较低。虽然本研究认为侵蚀是影响研究 区土壤速效钾的主要原因之一,但是本研究暂时只能 通过修订后的完全基于 ArcGIS 土壤流失方程 (USLE)^[20]来估算区域土壤侵蚀格局,未能将重要的 耕作侵蚀包含在内,因此未能计算出土壤侵蚀与土壤 速效钾的回归方程,加之速效钾易随水波动,因此也 降低了其与侵蚀之间的相关程度,此部分内容还需要 进一步研究。总之,黑土区典型坡面土壤速效钾在不 同坡位、不同土层分布受作物生长、土壤侵蚀、径流、 入渗等因素的影响,因此在施肥或采样过程中要考虑 不同坡位的代表性,特别是坡顶、坡背和坡脚处其变 异程度的代表性关系到施肥和研究结果的可靠性。同 时,因为本研究只选则了南坡作为研究对象,而黑土 区通常南坡侵蚀强度较大,坡度较陡^[21],因此其规 律是否适合北坡还需进一步验证。

样带	剖面数	剖面深度(cm)	$0\sim 20\ cm$	$20 \sim 30 \text{ cm}$	$30 \sim 40 \text{ cm}$	$40 \sim 50 \text{ cm}$	50 ~ 60 cm
А	5	$20 \sim 30$	0.917**	1			
		$30 \sim 40$	0.803**	0.963**	1		
		$40 \sim 50$	0.657*	0.584*	0.604*	1	
		$50 \sim 60$	0.525*	0.235	0.079	0.685**	1
		DEM	0.884*	0.964**	0.959**	0.762	0.355
		侵蚀量	0.493	0.445	0.236	-0.277	0.082
В	7	$20 \sim 30$	0.803*	1			
		$30 \sim 40$	0.815*	0.464	1		
		$40 \sim 50$	0.736	0.584	0.851*	1	
		$50 \sim 60$	-0.079	-0.042	0.342	0.319	1
		DEM	0.033	0.257	-0.134	-0.392	0.109
		侵蚀量	-0.1	-0.297	0.367	0.347	0.282
С	8	$20 \sim 30$	0.626	1			
		$30 \sim 40$	0.56	0.720*	1		
		$40 \sim 50$	0.175	0.155	0.647	1	
		$50 \sim 60$	0.063	-0.009	0.435	0.867(**)	1
		DEM	0.363	0.003	-0.318	-0.526	-0.485
		侵蚀量	-0.144	0.174	0.059	0.303	0.514
D	4	$20 \sim 30$	0.933	1			
		$30 \sim 40$	0.954*	0.958*	1		
		$40 \sim 50$	0.920	0.917	0.825	1	
		$50 \sim 60$	0.571	0.637	0.42	0.847*	1
		DEM	0.516	0.774	0.707	0.512	0.323
		侵蚀量	0.785	0.651	0.573	0.89	0.825

表 3 剖面各层土壤速效钾之间及与土壤侵蚀和 DEM 之间的相关分析 Table 3 RAK correlation between horizons, and with soil erosion and DEM

注:DEM 为数字高程模型(Digital elevation model);侵蚀量指由降雨所造成的侵蚀;**表示 LSD 多重比较达到 *P*<0.01 显著水平, * 表示 LSD 多重比较达到 *P*<0.05 显著水平。

4 结论

(1)研究区样带土壤速效钾含量处于 97.5 ~ 395.5 mg/kg之间,各样带土壤速效钾平均值一般是 从表土层 0~20 cm 处向 20~40 cm 处减小,然后逐 渐向 50~60 cm 处增大。其变异系数和极差一般从表 土层 0~20 cm 向 50~60 cm 处逐渐降低。

(2) 剖面土壤速效钾变化趋势整体上从 0~20 cm

处向深土层先逐渐减少,后增加,通常在 20~40 cm 处出现最低值。20~40 cm 土层速效钾相对波动较 小,规律性一般不同于深土层,相当于过渡层,而 40~50 cm 和 50~60 cm 土层土壤养分变化规律相 近,除样带 B 外均达到显著或极显著水平,主要是 因为其受外界因素影响较少。

(3) 土壤速效钾总体沿坡向向下呈现下降趋势, 同一土带各土层相隔越近速效钾沿坡向变化趋势越 接近,靠近表层土壤波动较大,靠近深层土壤波动 相对较小。各样带土壤剖面 0~60 cm 土层速效钾沿 坡向变异趋势基本相近,均是从坡顶变异程度最大 (*CV* = 23% ~ 28%),至坡肩变异程度相对较小(*CV* = 12% ~ 14%)。从坡肩向坡背变异系数总体先增大后 减小,直至坡足,后又在坡趾处升高。

参考文献:

 [1] 刘宝元,阎百兴,沈波,王志强,魏欣.东北黑土区农地水土流失现状与综合治理对策[J].中国水土保持科学, 2008,6(1):1-8

壤

- [2] 何艳芬,马超群.东北黑土资源及其农业可持续利用研 究[J].干旱区资源与环境,2003,17(4):24–28
- [3] 张少良,张兴义,崔战利.哈尔滨市辖区黑土有机质、全氮的空间异质性分析[J].农业系统科学与综合研究, 2007,23(3):333–337
- [4] Zhang SL, Zhang XY, Huffman T, Liu XB, Yang JY. Influence of topography and land management on soil nutrients variability in Northeast China[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3): 427–438
- [5] Zhang XY, Sui YY, Zhang XD, Meng K, Herbert SJ. Spatial variability of nutrient properties in black Soil of Northeast China[J]. Pedosphere, 2007, 17(1): 19–29
- [6] 金剑, 王光华, 刘晓冰, 李艳华, 陈雪丽, Stephen JH. 东 北黑土区高产大豆 R5 期根系分布特征[J]. 中国油料作 物学报, 2007, 29(3): 266–271
- [7] Sui YY, Liu XB, Jin J, Zhang SL, Zhang XY, Herbert SJ. Differentiating the early impacts of topsoil removal and soil amendments on crop performance/productivity of corn and soybean in eroded farmland of Chinese Mollisols[J]. Field Crops Research 2009, 111(3): 276–283
- [8] Zhang SL, Zhang XY, Liu XB, Liu W, Liu ZH. Spatial distribution of soil nutrient at depth in black soil of Northeast China: A case study of soil available potassium[J]. Nutrient Cycling in Agroecosystems, 2013, 95(2): 319–331
- [9] 张世熔,黄元仿,李保国,张凤荣,高峻.黄淮海冲积平 原区土壤速效磷、钾的时空变异特征[J].植物营养与肥 料学报,2003,9(1):3-8
- [10] Brady N, Weil RR, Nature and properties of soils[M]. London, Pearson Higher Education & Professional Group,

2000: 10-32

- [11] 鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2000:106-107
- [12] 张少良,刘威,张兴义,刘爽,李续峰,李浩.黑土区典型小流域土壤侵蚀空间格局模拟研究[J].水土保持通报, 2013,33(4):224–227
- [13] 黑龙江土地管理局. 黑龙江土壤[M]. 北京: 农业出版社, 1992: 149-170
- [14] 韩秉进,隋跃宇,赵军,孟凯,张旭东,解宏图.黑龙江 省黑土农田养分时空演变分析[J].农业系统科学与综合 研究,2005,21(4):288-291
- [15] 韩晓增, 王守宇, 刘晓洁. 黑土钾素分布状态与大豆钾 肥效应的研究[J]. 大豆科学, 2002, 21(1): 36–42
- [16] Pratt PF. Potassium removal from Iowa soils by greenhouse and laboratory procedures[J]. Soil Science, 1951, 72(2): 107–118
- [17] 孙维侠,黄标,杨荣清,朱静,邹忠,丁峰,苏健平,金 洋,毕葵森.长江三角洲典型地区农田土壤速效钾时空 演变特征及其驱动力[J].南京大学学报:自然科学版, 2005,41(6):648-657
- [18] 葛方龙,张建辉,苏正安,聂小军.坡耕地紫色土养分 空间变异对土壤侵蚀的响应[J].生态学报,2007,27(2): 459-464
- [19] 陈永宝,黄传伟,陈志伟,郭志民,苏杭生,王维明,阮 伏水. USLE 在我国的应用和发展[J].中国水土保持, 2003 (10): 11–13
- [20] 阎百兴,杨育红,刘兴土,张树文,刘宝元,沈波,王玉 玺,郑国相.东北黑土区土壤侵蚀现状与演变趋势[J]. 中国水土保持,2008 (12): 26–30

Spatial Distribution of Rapid Available Potassium (RAK) in Soils on Typical Slopes of Black Soil of Northeastern China

ZHANG Shao-liang¹, ZHANG Xing-yi^{2*}, LIU Xiao-bing², NING Yu-cui¹, ZHANG Zhi-qiang¹

(1 College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;

2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China)

Abstract: Rapid available potassium (RAK) in black soil (Mollisol) of 0–60 cm depth was measured to analyze its dynamics systematically in horizontally and vertically. The results indicated: RAK ranged from 97.5 to 395.5 mg/kg, decreased from horizon 0–20 cm to 20–40 cm, and then increased to 50–60 cm. Generally, variable coefficient (CV) and its range decreased from surface to deep. RAK decreased from top slope to down slope, and the dynamics were similar when horizons were closer. CV in horizon of 0–60 cm was higher in top slope (CV=23%-28%) and lower in shoulder slope (CV=12%-14%). RAK decreased at beginning, then increased and was lowest at horizon 20–40 cm.

Key words: Black soil (Mollisol), Sample transect, Soil profile, Soil available potassium, Soil erosion