淹没-出露条件下三峡水库小江消落带土壤性质变化研究^①

朱 强^{1,3}, 张志永^{1,2}, 胡红青^{1*}, 万成炎², 胡 Ξ^2 , 刘 Ξ^2

 (1 华中农业大学资源与环境学院,武汉 430070;2 水利部中国科学院水工程生态研究所,水利部水工程生态效应与生态修复重点实验室, 武汉 430079;3 华中师范大学城市与环境科学学院,武汉 430079;

摘 要:以2010—2011年间采自三峡水库小江流域不同海拔消落带土壤为材料,研究了淹没前后土壤有机质、 磷、氧化铁等性质的变化,以揭示消落带土壤的变化特征及其环境影响。结果表明:小江消落带土壤淹没后,土壤 pH、 有机质及速效磷、全磷、非晶质铁、游离氧化铁、黏粒含量增加;土壤出露后,监测点各海拔土壤的有机质、速效磷、 非晶形铁、游离氧化铁及黏粒含量降低;消落带土壤经过一个"淹没–出露"周期后,双江、高阳监测点海拔 170 m 和 165 m 土壤的铁活化度降低,而海拔 150 m 土壤的铁活化度明显升高,增幅分别达 12.4% 和 94.5%。消落带土壤在 经过淹没–出露过程后,磷有累积现象,其环境风险增大,应引起重视。

关键词:三峡水库;消落带;淹没-出露;土壤理化性质 中图分类号:S153.6

2003 年三峡水库第一期蓄水以来,由于水流变 缓,水体对河流中污染物的稀释能力减弱,水体富营 养化程度逐渐增加,2004 年起就出现了轻度的富营 养化现象。在2007 年及2008 年春夏及夏秋交接之 时,澎溪河河湾及主河道的部分河段爆发了"水华" 现象^[1]。近年的监测表明,三峡库区江段的总磷已逐 渐成为主要污染物。一些数据分析和模型计算显示, 三峡水库富营养化及其演化主要集中在消落区,底泥 的本底磷吸附量(NAP)及零点磷平衡浓度(EPC₀)逐渐 成为研究的热点^[2]。袁辉等^[3]发现消落带土壤淹水初 期可向上覆水释放氮和磷。

国内外对磷的吸附及迁移转化的研究很多,研究的主要对象是农田、湖库沉积物和湿地等^[4]。三 峡水库消落带在淹水周期内,所处环境类似于湖库 沉积物,但又有明显不同,在淹没-出露的周期性 变化中,土壤 pH、有机质、氧化铁及黏粒等的变 化直接影响到土壤养分的有效性。本文从三峡水库 消落带土壤性质变化的角度分析土壤与水体间养 分的动态关系,以揭示消落带土壤的性质变化,旨 在为三峡库区消落带土壤及水环境管理提供科学 依据。

1 材料与方法

1.1 样品采集

小江(又名澎溪河)为三峡重庆库区长江北岸的 一级支流,在小江消落带沿岸选取高阳(31°05'9"N, 108°40'5"E)、双江(30°57'9"N,108°39'8"E)2 个监测 点,根据地形条件,在每个监测点海拔 150、155、 160、165、170 m处各设置 3 个 1 m × 1 m 采样 方,样方间距 10~20 m,2010 年 3 月至 2011 年 9 月每月分别采取表土 0~20 cm 混合样(淹没期间 只采集出露土样),土样均为紫色土。

1.2 土壤基本理化指标的测定

土壤基本理化指标,包括:pH、有机质、速 效磷、全磷的测定按照《土壤农化分析(第3版)》 的方法进行;应用校正后的 Langmuir 方程拟合土 壤对磷的吸附作用,钼锑抗比色-差减法测定磷含 量^[5];黏粒含量采用沉降-吸管法测定;无定形铁 氧化物(Fe₀)由草酸铵-草酸缓冲液提取,原子吸 收光谱法(AAS)测定;游离氧化铁(Fe_d)由连二亚 硫酸钠-柠檬酸钠-碳酸氢钠(DCB)溶液提取,AAS 测定。

基金项目:国家水体污染与治理科技重大专项(2013ZX07104)、三峡后续工作科研项目(2013HXKY2-3)和国家自然基金面上项目(51379133) 资助。

^{*} 通讯作者(hqhu@mail.hzau.edu.cn)

作者简介:朱强(1987—),男,湖北荆门人,硕士,讲师,主要从事土壤学研究。E-mail:zhuqiang@mail.ccnu.edu.cn

2 结果与分析

2.1 消落带土壤基本化学性质的变化

表 1 为供试监测点土壤经历出露-淹没-出露 后基本化学性质的变化。可以看出,两监测点各海 拔土壤的 pH、全磷经出露后比刚出露时有上升的 趋势,而土壤有机质及速效磷含量表现出降低的趋 势;淹没后,土壤 pH、有机质及速效磷、全磷含 量均表现出增加的趋势,且海拔 150 m 土壤的各项 性质增幅最明显。双江监测点土壤有机质、速效磷、 全磷含量的增幅分别达 146.1%、74.7%、134.5%, 高阳监测点土壤的增幅则分别为 146.8%、1757.5%、 175.0%;两监测点的 pH 则分别增加了 1~2 单位; 经 2011 年出露后,土壤 pH、有机质及速效磷的 变化与 2010 年出露后的变化趋势相同,但土壤全 磷多有所降低,不同于 2010 年出露后土壤全磷的 变化。

小江消落带土壤在经历一个淹没–出露周期后, 两监测点各海拔土壤 pH、有机质及速效磷、全磷的 变化量如表2所示。

表 1 小江消落带土壤经出露--淹没--出露后的 pH、有机质及磷含量变化

Table 1	The pH, organic matter	and phosphorus cont	tents of soils from Sh	uangijang and Gaoya	ng sites after drain-flooding-drain proces	SS

采样时期	双江				高阳				
	海拔 (m)	pН	有机质 (g/kg)	速效磷 (mg/kg)	全磷 (g/kg)	рН	有机质 (g/kg)	速效磷 (mg/kg)	全磷 (g/kg)
2010年刚出露时	170	7.11	11.66	15.05	0.44	5.57	16.07	7.17	0.12
	165	6.10	19.94	38.12	0.44	5.13	14.2	6.37	0.07
	160	5.91	15.01	15.13	0.33	5.04	16.88	5.23	0.16
	155	6.04	14.28	37.52	0.30	5.49	17.37	7.52	0.21
	150	6.54	9.19	10.79	0.29	5.76	13.13	1.06	0.20
2010 年淹没前	170	7.67	9.44	10.3	0.64	6.37	11.09	2.19	0.20
	165	6.87	11.89	23.19	0.65	6.02	9.18	2.07	0.18
	160	6.53	15.3	16.28	0.62	5.57	14.97	2.53	0.20
	155	6.58	9.02	12.03	0.35	5.47	10.71	0.25	0.17
	150	6.54	9.19	10.79	0.29	5.76	13.13	1.06	0.20
2011 年刚出露时	170	7.55	14.18	24.14	0.91	6.43	8.60	9.19	0.42
	165	6.77	14.70	23.42	0.67	6.65	9.50	6.70	0.42
	160	6.98	13.34	12.28	0.50	5.42	19.09	10.51	0.29
	155	6.90	10.23	11.99	0.50	7.87	18.08	14.19	0.41
	150	7.76	22.62	18.85	0.68	8.01	32.40	19.69	0.55
2011 年淹没前	170	8.17	10.50	5.68	0.75	6.43	4.15	1.89	0.36
	165	6.93	14.78	25.53	0.81	6.10	7.85	1.67	0.33
	160	6.92	7.49	5.05	0.48	5.53	6.90	2.87	0.21
	155	6.91	8.14	7.23	0.53	6.17	6.95	3.57	0.28
	150	7.82	10.23	7.76	0.49	8.07	22.41	16.59	0.57

表 2 小江消落带土壤经出露--淹没--出露后的 pH、有机质及磷含量变化量

Table 2 The variations of basic chemical properties about soils from Shuangjiang and Gaoyang sites after "flooding-drain" cycle

海拔(m)			双江		高阳				
	pH	有机质(g/kg)	速效磷(mg/kg)	全磷(g/kg)	pH	有机质(g/kg)	速效磷(mg/kg)	全 磷(g/kg)	
170	0.50	1.1	-4.6	0.11	0.06	-6.9	-0.3	0.16	
165	0.06	2.9	2.3	0.16	0.08	-1.3	-0.4	0.15	
160	0.39	-7.8	-11.2	-0.14	-0.04	-8.1	0.3	0.01	
155	0.33	-0.9	-4.8	0.18	0.70	-3.8	3.3	0.11	
150	1.28	1.0	-3.0	0.20	2.31	9.3	15.5	0.37	

注:表中"-"为负号,表示降低;下表同。

从表 2 可以看出,小江消落带双江及高阳监测点 的土壤经一个"淹没-出露"周期后,各海拔土壤的 pH 和全磷均有不同程度的增加,其中 150 m 海拔土 壤的增加最显著;对土壤有机质及速效磷,海拔 170 m 到 155 m 各土壤主要表现为降低的趋势,而在海拔 150 m,双江土壤有机质含量有所增加,速效磷含量 降低,高阳土壤的有机质及速效磷含量均增加。海拔 150 m 土壤在 2010 年 7 月开始淹没,2011 年 6 月出 露,而后 8 月再次被淹没,其淹没时间要明显长于其 他海拔土壤,使得该土壤各项理化性质的变化明显不 同于其他海拔土壤。

通过磷的吸附实验,将两监测点土壤经历一个 "淹没–出露"期后的拟合数据进行对比,各参数的变 化量如表3所示。

从表 3 可以看出,双江、高阳监测点土壤经历一个"淹没–出露"周期后,土壤的磷最大吸附量呈增加的趋势,说明土壤对磷的吸附容量增加;土壤的NAP、EPC。值升高,同时全磷含量升高,说明土壤中有磷的累积,而 K₂降低,说明土壤对磷竞争吸附

减弱,土壤磷较易进入水体,环境风险增大。

2.2 消落带土壤黏粒含量的变化

试验期内双江、高阳监测点经历淹没、出露后土 壤黏粒含量如图1所示。从图1可以看出,土壤出露 后,两监测点各海拔的土壤黏粒含量相比于其刚出露 时均有降低,说明出露期有黏粒流失,细颗粒随降水 向江水迁移^[6]:海拔 150 m 处土壤比海拔 170 m 的颗 粒细小,可能是由于坡面流水携带细粒土壤在坡下堆 积造成[7];双江土壤经淹没后,黏粒含量增加,说明 有土壤颗粒的沉降发生。由于库区实行"蓄清排浊" 的运营策略,在开始蓄水后的上游来水较清,水体携 带的土壤细颗粒较少,同时由于低海拔处土壤淹没时 间较长,土壤颗粒沉降时间长而沉积量大,使海拔 150 m 处土壤黏粒的增加显著,增幅达 39.9%,而海 拔 170 m 土壤黏粒含量降低了 31.9%。 双江土壤经一 个"淹没-出露"周期后,除海拔155m土壤黏粒含 量有增加外,其余各海拔土壤的黏粒含量均低于之 前,从海拔170m到150m,土壤黏粒含量降幅分别 为 45.2%、 3.74%、 42.2%、 -42.0%、 20.4%。

	表 3	消落带两监测	则点土壤经	"淹没–出露"	后 Q _m 、	NAP,	EPC ₀ 及K _p 自	的变化量	
Table 3	The varia	tion of Qm, NAP	EPC_0 and K_n	of soils from Sh	uangjiang	and Gao	ovang sites after	"flooding-drain"	' cycle

		()	° P		0, 0, 1	0	U	5	
海拔		双江	Γ		高阳				
(m)	Qm (mg/kg)	NAP (mg/kg)	EPC ₀ (mg/L)	K _p (L/kg)	Qm (mg/kg)	NAP (mg/kg)	EPC ₀ (mg/L)	K _p (L/kg)	
170	22.8	5.14	0.052	-9.95	25.3	1.02	-0.014	40.48	
165	16.5	12.57	0.153	-3.03	19.7	2.16	0.024	-11.62	
160	8.0	-0.50	-0.015	52.17	55.6	4.47	0.009	106.2	
155	12.2	2.34	0.021	-60.02	43.6	-0.33	0.015	-56.86	
150	39.1	2.10	0.024	-114.9	161.1	8.67	0.074	-37.25	

注: Q_m 为 Langmuir 方程拟合的磷最大吸附量, K_p = NAP/EPC₀,表示磷分离系数,值越大,说明土壤对磷的竞争吸附力越大。

图 1 双江(a)、高阳(b)监测点不同海拔土壤经淹没或出露后黏粒含量 Fig. 1 The clay contents of soils from different heights of Shuangjiang(a) and Gaoyang(b) sites after flooding or drain

2.3 消落带土壤氧化铁含量的变化

有研究表明,土壤对磷的吸附与土壤中氧化铁特 别是非晶形铁呈显著正相关^[8],土壤淹没后非晶形氧 化铁显著增加,同时结晶态氧化铁的数量减少^[9]。在 2010—2011 年采样期内,小江消落带土壤中的无定 形氧化铁含量变化如图2所示。由图2可见,两监测点 土壤出露后处于氧化状态,还原性铁被氧化,非晶形铁 向晶形转化,非晶形铁含量降低,平均降低0.53 g/kg; 土壤淹没后,还原性铁不断扩散至淹没土壤氧化层 中,形成铁泵效应,在氧化层中再转化成无定形氧化 铁^[10],导致土壤中非晶形铁含量有不同程度的上升。 海拔150 m 土壤的淹没时间长,非晶形铁含量增加显 著,两监测点的增幅分别达117.5%、164.8%,明显 高于其他海拔的土壤。

壤

图 2 双江(a)、高阳(b)监测点不同海拔土壤经出露-淹没-出露后非晶形氧化铁含量

Fig. 2 The Amorphous iron(Feo) contents of soils from Shuangjiang(a) and Gaoyang(b) sites after drain-flooding-drain process

图 3 为两监测点各海拔土壤在 2010—2011 年 间经出露-淹没-出露周期后游离氧化铁含量变化。 可以看出,出露后,两监测点各海拔土壤的游离氧 化铁均表现出降低的趋势,降幅在 0.3 ~ 4.6 g/kg; 而淹没后,土壤游离氧化铁含量又有明显的上升。 小江消落带其他土壤监测点也有类似的变化规律, 可能是小江消落带土壤在出露-淹没期磷吸附量变 化的原因之-^[11]。 比较图 2、图 3 可见,两监测点土壤出露后,游 离氧化铁的降幅要明显高于非晶形铁的降幅;而在 淹没后,游离氧化铁的增幅也较高。说明出露后有 土壤细黏粒流失,淹没则存在土壤黏粒的淀积作用, 因其中氧化铁含量较高,从而对土壤铁含量变化影 响较大^[12]。

两监测点各海拔土壤铁活化度(Fe_o/Fe_d) 经历 一个"淹没–出露"周期后的变化见表 4。

表 4 双江、高阳监测点土壤经"淹没--出露"周期后铁活 化度的变化

 $\begin{array}{ll} \mbox{Table 4} & \mbox{The variation of Fe_0/Fe_d$ in soils from Shuangjiang and} \\ & \mbox{Gaoyang sites after a "flooding-drain" cycle} \end{array}$

监测点	铁活化度变化(%)								
	170 m	165 m	160 m	155 m	150 m				
双江	-5.45	-7.29	11.91	-11.41	12.40				
高阳	-12.74	-13.17	-17.54	16.69	94.46				

从表 4 中可以看出,两监测点土壤经"淹没-出 露"周期后,海拔 170、165 m 土壤铁的活化度降低, 海拔 150 m 土壤的铁活化度均上升;海拔 160、155 m 土壤在两监测点的变化规律不同,双江监测点海拔 160 m 土壤铁活化度增加,155 m 处降低,高阳则相 反。高阳监测点不同海拔土壤的铁活化度变幅要明显 高于双江监测点,这可能与双江主要为缓坡而高阳主 要为陡坡的地形特征有关。在较高海拔,土壤淹没期 短,出露期长,土壤中铁向非晶形铁的转化较少,同 时受降雨冲刷等影响较大,铁随黏粒流失,使铁活化 度降低;而在低海拔,土壤淹没时间长,出露期短, 受淹没影响较大,土壤中晶形铁向非晶质铁转化得较 多,导致土壤铁活化度增加。

3 讨论

消落带土壤经"淹没–出露"后,土壤理化性质 的变化必然会影响消落带土壤中元素的迁移。土壤 pH 高低可控制和影响土壤微生物区系,从而影响某 些营养元素的转化方向、过程、形态及有效性等^[13]。 一般来说,pH 升高,消落带土壤对铵氮的吸附能力 增强^[14],但另有研究表明,土壤对铵氮的吸附属于 物理吸附^[15],颗粒越细,土壤对铵氮的吸附能力越强。 经淹没–出露过程后,消落带土壤的 pH 升高,但土壤 黏粒含量普遍降低,这可能使土壤对铵氮的吸附能力 降低,氮的流失风险增加。

由于三峡水库消落带部分植被已遭受破坏,使土 壤有机质缺乏补给,这会加剧土壤结构破坏,再由于 周期性干湿交替作用,更加快了土壤有机质的分解^[16]。 从本实验结果可以看出,经过一个淹没–出露周期后, 监测点海拔170m土壤的淹没期短,出露时间长,有 机质含量降低;而海拔150m土壤的淹没期长,出露 时间短,有机质含量增加,可能是在淹没过程中有外 源有机质进入土壤。

此外,室内淹没-出露模拟实验表明^[17],淹没和 干湿交替能促进紫色土和水稻土对磷的吸附,降低磷 在水土界面的迁移能力。有研究发现,消落带土壤经 过"淹没-出露"周期后,土壤的磷最大吸附量增加, 磷迁移能力减弱;本文监测点经一个淹没-出露周期 后,土壤有机质、速效磷及黏粒含量均表现为降低 的趋势,而游离氧化铁、非晶质铁含量增加,说明 在淹没、出露过程中引起的铁形态变化对磷的吸附 影响较大。

4 结论

(1)小江消落带土壤在出露期,土壤 pH、全磷 含量有增加的趋势,而土壤有机质、速效磷、非晶质 铁、游离氧化铁及黏粒含量降低。这些性质变化中, 以海拔 150 m 土壤的变幅最显著,土壤出露后存在速 效磷的损失。

(2)两监测点土壤淹没后,土壤 pH、有机质含量及速效磷、全磷含量均表现出增加的趋势,土壤非晶质铁、游离氧化铁、黏粒含量增加,且150m海拔土壤的各项理化性质变幅最明显。

(3)小江消落带两监测点土壤经一个"淹没–出露"周期后,各土壤的 pH 和全磷含量均有不同程度的增加,海拔 170 m、165 m 土壤的铁活化度降低, 150 m 海拔土壤的铁活化度升高,各土壤的黏粒含量低于循环前的同期水平。

参考文献:

- [1] 林玉海, 王楠, 赵秀兰, 何丙辉. 三峡库区澎溪河流域消
 落区土壤氮磷释放研究[J]. 水土保持学报, 2010, 24(2):
 131-140
- [2] 石孝洪, 魏世强, 谢德体. 三峡水库消落区土壤磷释放

特征[J]. 西南农业大学学报(自然科学版), 2004, 26(3): 331-335

- [3] 袁辉,王里奥,胡刚, 詹艳慧. 三峡库区消落带受淹土 壤氮和磷释放的模拟实验[J]. 环境科学研究, 2008, 21(1): 103-106
- [4] Mcdowell RW, Sharply AN, Folmar G. Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs[J]. Agriculture, Ecosystem & Environment, 2003, 99: 187–199
- [5] Wang Y, Shen Z, Niu J, Liu R. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir(China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009, 162: 92–98
- [6] 吕家珑,张一平,张君常.土壤磷运移研究[J].土壤学报,1999,35(1):75-82
- [7] Defersha MB, Melesse AM. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio[J]. Catena, 2012, 90: 47–52
- [8] 刘云兵,孙爱华,曹秀云,宋春雷,周易勇.不同固磷方 式对巢湖沉积物磷吸附行为的影响[J].水生生物学报, 2011,35(2):319–324
- [9] Schefe CR, Kappen P, Zuin L. Addition of carboxylic acids modifies phosphate sorption on soil and boehmite surfaces. A solution chemistry and XANES spectroscopy study[J]. Journal of Colloid and Interface Science. 2009, 330: 51–59
- [10] 夏建国,仲雨猛,曹晓霞.干湿交替条件下土壤磷释放 及其与土壤性质的关系[J].水土保持学报,2011,25(4): 237-243
- [11] 朱强, 安然, 胡红青, 万成炎, 胡莲, 王素梅. 三峡库区 消落带土壤对磷的吸附和淹水下磷的形态变化[J]. 土壤 学报, 2012, 49(6): 1 128–1 135
- [12] 刘敏,侯立军,许世远,欧东妮,张斌亮,刘巧梅,杨毅. 长江河口潮滩表层沉积物对磷酸盐的吸附特征[J]. 地理 学报,2002,57(4):397-406
- [13] Devau N, Le CE, Hinsinger P, Philippe H, Benoit J, Frederc G. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modeling approaches[J]. Applied Geochemistry, 2009, 24(11): 2 163–2 174
- [14] Wang FL, Alva AK. Ammonium adsorption and desorption in sandy soils[J]. Soil Science Society of America Journal, 2000, 64(5): 1 669–1 674
- [15] 孙大志,李绪谦,潘晓峰.氨氮在土壤中的吸附/解吸动 力学行为的研究[J].环境科学与技术,2007,30(8):16–18
- [16] 王晓荣,程瑞梅,肖发文,郭泉水,封晓辉.三峡库区消 落带初期土壤养分特征[J]. 生态学杂志,2010,29(2): 281-289
- [17] 冯孝杰,魏朝富,谢德体,余炜敏,范小华.周期性淹水 对消落区水土环境的影响及控制对策[J].农业资源与环 境科学,2005,21(10):356–359

Soil Property Changes Under Drain-Flooding Condition in Xiaojiang Water-level-fluctuating Belt of the Three-Gorge-Reservoir Region

ZHU Qiang^{1,3}, ZHANG Zhi-yong^{1,2}, HU Hong-qing^{1*}, WAN Cheng-yan², HU Lian², LIU Hui²

(1 College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; 2 Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China; 3 College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China;

Abstract: The soil samples were collected in Xiaojiang River Basin at different altitudes from 2010 - 2011. The changes of soil physiochemical properties, including soil pH, organic matter, phosphorus and iron oxide, were studied to reveal the variation of water-level-fluctuating belt soil and its environmental impact. The results showed that: the soil pH, organic matter, available phosphorus(P), total P, amorphous iron(Fe_o), free iron (Fe_d) and clay content increased after flooding; the soil organic matter, available P, Fe_o, Fe_d and clay content decreased after drain; the Fe_o/Fe_d of soils decreased from Shuangjiang and Gaoyang sites in 170 m and 165 m altitudes under a "drain-flooding" cycle, but the Fe_o/Fe_d increased significantly by 12.4% and 94.5%, respectively, in 150 m altitude. As the physiochemical properties of soils changed obviously change under "drain-flooding" process and P accumulated, the increasing environmental risk should be taken into consideration seriously.

Key words: Three-Gorge-Reservoir Region, Water-level-fluctuating belt, Drain-flooding, Soil physiochemical properties