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CO, N
1 L PVC
N CO, CO, 8:00 18:00
Arnon
19
1 1] 12
1.1 6:00—18:00
CO, 3 400( 30 min 18:00 6:00 30 min
CO, Cl) 625(C2) 1200 (C4) pmol/mol 17:00 100 ml
NO3-N 3 2( N) 71 N)
14( N)mmol/L CcO, 3 0.1 mmol/L NaOH  0.05 mmol/L
400(C1) 800(C3) 1200 (C4) umol/mol 4 H,S0, pH 6.50
14/0(N1) 13/1(N2) 11/3(N3) (L95-82 ) 30 min
8/6(N4) (L99-LX
3 ) 10 min
(OTCs) CO;, 2013 4—6
CO, 99.99% 1
CO, 3 000 pmol/molCO, 16 50 3 OTCs
CO, (23.6+£5.0)C  (24.1£5.0)C
(24.1£5.2) C 71.4%+20.1% 73.4%=
18.5% 74.1%+18.4%
CO, 90% (4 010+6 590) 1x( + )
+50 pmol/mol 2014 2—4
6 2
1.2 51 3 OTCs
( ) (18.946.6)C (19.0+6.4) 'C (18.9+6.8) C
10% 15 min 68.7%+21.5% 68.3%+21.0% 67.5%+21.2%
25C (9 580416 530) 1x( + )
R 1 = NO:-N LLERIEF R KA E T ZE MK (mmol/L)
Table I Components of macro-elements of three nitrate nutrient solutions
N Ca(NO3), KNO; Mg(NO;), Ca(H,PO.), K,SO, CaS0, MgSO,
2 1 0.5 3 2 2
7 3 1 0.5 2.5 2
14 3 6 1 0.5 1
2 MFFHEERILAMEEIEFRIRK 2 TTREB (mmol/L)
Table 2 Components of macro-elements of four N nutrient solutions
NO3/NH; Ca(NO;), KNO; Mg(NO3), Ca(H,P0.), MgSO;, NH,NO; (NH,),SO,4 K,SO,
14/0 3 6 1 0.5 1
13/1 3 6 0.5 2 1
11/3 3 5 0.5 2 1.5 0.5
8/6 3 2 0.5 2 3 2
1.3 a b 95%
(Epoch, USA) 9
100°C 15min 70°C 1.4

Microsoft Excel 2007 IBM SPSS
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19 Tukey 54.5% 63.6% 772%( 3 1A)
) N N C4

C3 Nl N2 N3 N4
2.1 CO; N N3
N C4 C4 C3
3 RRBENRAFEIWER
Table 3 Results of ANOVA of indexes in two experiments
DWS DWI DW2 EN bS CS TS al bl
CO, *% *% *% *k sk *% ®% NS NS
N k% k% kK kK kK k% k% kK k3
COZ*N k% * kK kK * * * NS NS
CI TI a2 b2 C2 T2 abS abl ab2
CO, NS NS Hok *k ok ok *% P sk
N H* ** NS NS NS NS ** * NS
CO,*N NS NS * ok NS * ok ok NS
DWS DWI DW2 aS bS CS TS a
b al bl CI TI a b a2 b2 C2 T2
a b abS ab ab2 a/b a/b
a/b NS *  P<0.05 ** - P<0.01
6f N N C4
Al a b ( 2
N C4 b C3
0 Co,
der“ (mmol/L) ( 3)
[ ®) -400 E625 [ J1200 a
40} 2.3 CO;
@ 30} 3 COo, C3 N2
E 0l 3 (4 3
ol N3 c4 a
0 “7 N4 CO,
{Z%J; (mmol/L) C1 N4 3 N
ol © a 400 800 [_]1200
2.4 CO; N
N N a/b CO,
N
( 5 3 C4
14/0 13/1 1173 8/6 a/b N3
i Lt
(A, B Co, NO;-N 3
C CO,
+ (n="6) CO;
N o, P<0.05 Bl
(Tukey ) 400 625 800 1200 CO, N [21]
(umol/mol) ) co
1 BEMMEHTE :
Fig. 1 Dry weight of the entire cucumber (Cucumis sativus L.) CO,
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Fig. 2 Chlorophyll a, b, carotenoids and total pigments in leaves of cucumber grown under various CO, concentrations and nitrate supplyrates at
seedling stage
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Fig. 4 Chlorophyll a, b, carotenoids and total pigments of leaves of cucumber grown under various CO, concentrations and nitrate/ammomium
ratios at initial fruit stage
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Fig. 5 Chlorophyll a/b of leaves of cucumber (Cucumis sativus L.)
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Effects of Elevated CO,, N Concentration and N Forms on
Photosynthetic Pigments Concentration and Composition

BAO Li'?, DONG Jinlong'?, LI Xun', DUAN Zengqiang'"

(1 State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing
210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: This study consisted of two experiments to study the leaf photosynthetic pigment concentrations of cucumber.
The first one studied the effects of elevated CO, and nitrate concentration under three nitrate concentrations [2(low N),
7(moderate N) and 14(high N) mmol/L] and three CO, concentrations [400 (C1), 625 (C2) and 1 200 (C4) umol/mol]. The second
one studied the effects of elevated CO, and N forms under three CO, concentrations [400 (C1), 800(C3) and 1200 (C4) umol/mol]
and four ratios of nitrate to ammonium concentrations [14/0(N1), 13/1(N2), 11/3 (N3) and 8/6(N4)]. The results showed that: at
the seedling stage, C4 treatment enhanced the biomass of all the three N supplies and this effect decreased at the initial fruit stage.
The biomass of C3 treatment increased and was the highest among the CO, treatments. At the seedling stage, the chlorophyll a, b
and carotenoids concentrations of the low and moderate N increased under C3 treatment, while high N increased the chlorophyll b
and total pigment concentrations. Three pigment concentrations of N2 treatment were the highest under C3 treatment, while their
concentrations in N3 treatment were the highest under C4 treatment among the CO, treatments. Thus, at the seedling stage,
elevated CO, decreased three pigment concentrations of low N due to “dilution effect” caused by the high growth rate. But when
N concentration was 14 mmol/L, elevated CO, increased the pigment synthesis and this rate was higher than the growth rate,
which resulted in higher pigment concentrations. This effect also existed with high ammonium supply. The pigment concentration
was generally controlled by the growth rate and pigments synthesis rate simultaneously. Under moderate and high N, chlorophyll
a/b at the seedling stage increased under high CO,, but only that of the high N decreased at the initial fruit stage. Moreover, C4
treatment enhanced chlorophyll a/b, which may be enhanced by high light density and low N concentration. Practically, the
cucumber cultivation under elevated CO, should combine with high N concentration, high ammonium supply rates and high plant
density.

Key words: CO, fertilization; Nitrate to ammonium ratio; Growth rate; Pigment synthesis rate; High plant density



