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Iron Induced Effects on Arsenic’s Environmental Chemical
Behavior in Paddy Soil: A Review

ZHONG Songxiong'?, YIN Guangcai’, CHEN Zhiliang'*, LIN Qintie?,
PENG Huanlong', LI Fanghong', HE Hongfei’

(1 South China Institute of Environmental Science, MEP, Guangzhou 510655, China; 2 School of Environmental Science and
Engineering, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Under flooded and anoxic condition, reduction of iron minerals in paddy soil and formation of iron plague on
root surface in interface microenvironment cause arsenic to release and contribute to arsenic absorption. Characterizing
mechanisms of how iron affect arsenic is an effective method for reducing absorption of soil arsenic into rice. This paper
reviewed the advances at home and abroad in iron’s effects on arsenic. The effects are discussed from five aspects, including rice
aerenchyma, redox potential of soil solution, species of iron mineral, organic matter and species of anions, and research prospects
are also discussed in order to provide references for remediation of arsenic contamination in paddy soil and inhibition of arsenic
absorption into rice.

Key words: Arsenic; Iron; Paddy soil; Redox; Interface microenvironment



