DOI: 10.13758/j.cnki.tr.2016.04.026

希拉穆仁荒漠草原风蚀地表颗粒粒度特征

丁延龙¹,高 永¹,蒙仲举^{1*},娜仁格日勒²,黄 昕¹,孙晓瑞¹, 吴 吴¹,党晓宏¹,王 猛¹

(1 内蒙古农业大学沙漠治理学院,呼和浩特 010018;2 内蒙古自治区锡林郭勒盟镶黄旗国营苗圃,内蒙古锡林郭勒 013250)

摘 要:以荒漠草原常见的耕作区、围封区、放牧区及旅游区 4 种土地利用类型表层土壤为研究对象,利用激 光衍射技术分析了 0~2 cm 表层土壤粒度组成,计算并分析平均粒径、标准偏差、偏度、峰态及分形维数等粒度参数, 探讨风蚀颗粒范围。结果表明: 希拉穆仁荒漠草原耕作区、围封区、放牧区及旅游区 4 种土地利用类型土壤粒度组 成均表现为以砂粒和粉粒为主,黏粒含量较低,样地平均粒径数值依次变小,分选性逐渐变好,峰态平缓,分形维数 数值逐渐减小,土壤颗粒组成依次粗化;偏度分别为负偏、近于对称、正偏和偏正偏,彼此差异明显,偏度可作为有 效的粒度参数指标。 通过分析粒度分布频率曲线和土壤粒度累积频率间平均距离,显示研究区粒径为 134 μm 和 454 μm 附近颗粒为近自然状态下的易风蚀颗粒。各粒度参数及分维值均显示放牧和旅游加剧希拉穆仁草原表层土壤风蚀, 土壤粒度分布范围变宽,整体向粗粒化方向发展。

关键词:粒度特征;风蚀;荒漠草原 中图分类号:S152.3

荒漠草原广布于内蒙古集二线以西的内蒙古高 原及鄂尔多斯高原西部地区,是草原向荒漠过渡的生 态交错带,区内全年干旱少雨,冬春季节风力强劲, 生态环境异常严酷。境内植被种类简单,草层稀疏低 矮,稳定性差,对环境变化反应敏感^[1-2]。作为传统的 牧区,家畜放牧是该地区最常见且直接的经济方式^[3]。 该地区在开垦草地耕种亦有悠久历史,最早在北魏太 安年间即有文字记录的垦殖活动,距今已有1500余 年^[4]。长期的放牧与垦殖等生产活动,导致土壤质量 下降^[5],加之风大沙多,土壤侵蚀剧烈,土壤粗粒化 十分普遍,是京津沙尘天气的风沙源地之一^[6-7]。近 年来,社会经济水平不断提高,草原旅游业方兴未艾, 然而大量的旅游设施建设和日益增长的旅游活动极 大地影响了草原环境,造成草原景观格局的破碎化等 问题^[8]。

土壤粗化被认为是我国北方草场退化、沙化的主要表现形式之一^[9]。土壤不同径级颗粒的配比在地表风蚀过程的下垫面因子中扮演着关键角色,是影响土壤风蚀发生及发展的关键因素^[10–11],对荒漠化的发生及发展具有重要的指示意义。土壤粒度特征作为土壤

物理性质的重要指标,表征了土壤中不同径级矿物颗 粒的配比及分布情况,其参数变化受搬运介质、搬运 方式、沉积环境和气候等因素控制,可解释颗粒的运 移情况,进而判断沉积环境的演变过程,在土地荒漠 化研究中的应用愈来愈广泛[12-14]。粒度参数常用指 标包括平均粒径(d_0)、标准偏差(δ)、偏度(SK)与峰态 (K_a)等^[15], 粒度参数散点图、概率累积分布图、物源 判别函数等也常在区分沉积环境中有所使用^[16-17]。 随着研究方法的日益更新,分形理论作为定量描述 土壤结构特征的新方法,在土地沙化的研究中广泛 涉及^[18]。目前草原土地退化的研究多涉及土壤的物 理和化学性状^[19-20],多从土壤质量方面对其进行评 价,关于荒漠草原不同土地利用方式下表层土壤粒度特 征的研究涉及较少,针对近自然状态下荒漠草原风蚀地 表土壤易风蚀颗粒的识别研究更是鲜见报道[21-23]。不 同土地利用类型对地表土壤干扰程度不同,将对土壤 粒度组成及各粒度参数产生影响^[3-5,8]。土壤粒度组 成是决定风蚀强度的重要因素,反映着土壤退化状 况^[10-11,23]。因此,探明荒漠草原不同土地利用类型下 土壤粒度特征,进而准确判断荒漠草原土壤退化程

基金项目:中科院西部之光项目和内蒙古农业大学优秀青年科学基金项目(2014XYQ-8)资助。

^{*} 通讯作者(mengzhongju@126.com)

作者简介:丁延龙(1990—),男,安徽亳州人,博士研究生,主要从事荒漠化防治研究。E-mail: dingyanlong1990@126.com

壤

度,对合理利用与保护草地资源至关重要。

本文以内蒙古中部希拉穆仁荒漠草原围封 11 年 草地、持续放牧草地、耕作区和旅游景区的风蚀地表 土壤为研究对象,通过分析不同土地利用类型的表层 (0~2 cm)土壤粒度组成,比较土壤粒度参数及分形 维数等指标,旨在揭示不同类型地表土壤粒度组成的 差异及变化情况,并对荒漠草原地表土壤易风蚀颗粒 进行判别分析,以期为希拉穆仁荒漠草原地表土壤粗 化程度的精确评估提供可靠的数据支持,并为相关部 门土地利用决策提供理论参考。

1 研究区概况

研究区位于希拉穆仁荒漠草原(41°12′~41°31′N, 111°00′~111°20′E),行政上隶属内蒙古包头市达尔 罕与茂明安联合旗。地处大青山北麓、内蒙古高原中 部地带的南缘,系阴山山地向内蒙古高原的过渡带,地 形为低山丘陵类型,地势起伏不大,平均海拔1600m, 较为平坦开阔。气候属于中温带大陆性半干旱季风气 候,为中国季风区域的尾闾地带,季风气候特点不明 显。属半干旱荒漠草原,年平均降水量为284 mm, 潜在蒸发量高达2305 mm,降雨主要集中在7、8、9 月;年均气温2.5℃;年均风速4.9 m/s,全年主风向 以北风和西北风为主,其次为西风,>6 m/s的起沙风 多年平均为56.8 次/a,以西北风、西风最多(图1); 春秋季干旱多风,夏季雨量较充沛,冬季寒冷干燥。 土壤分布规律基本属于水平地带性分布,局部由于地 形、母质及水分条件的差异,发育成隐域性土壤。研 究区内主要分布有栗钙土和草甸土类,有190多种植物,草场主要群落结构为"克氏针茅(Stipa krylovii)+ 羊草(Leymus chinensis)+冷蒿(Artemisia frigida)"^[24]。

2 研究内容与方法

2.1 样品采集与分析

选择希拉穆仁荒漠草原水利部水土保持试验中 心围封区、围栏外东北方向放牧区、围栏南部耕作区 以及旅游区作为样品采集区域,各采样区域大致分布 在东西宽 1.0 km,南北长 1.5 km 区域内,采样区内 地势较平坦,坡度在 2.2°~3.0°。耕作区所处位置海 拔最低,主要种植玉米(Zea mays L.),每年 5 月进行 翻耕,翻耕深度 40 cm 左右,秋季收获后直接将秸秆

Fig. 2 Location of the study area

平铺覆盖,至第二年5月翻耕时除去;围封区自2003 年开始围栏封育,区内植被盖度在70%~95%,优势 种为羊草和冰草(Agropyron cristatum),植物平均高度 约45 cm;放牧区每年均进行放牧,放牧强度为2.25 羊/hm²,远超当地草场理论载畜量0.5 羊/hm^{2[25]},除 此之外,在旅游季节还有部分游客活动,植被盖度在 30%~40%,优势种为克氏针茅和冷蒿,伴有狼毒 (Stellera chamaejasme)、百里香(Thymus mongolicus Ronn.),平均高度约15 cm;旅游区游客集中在7—9 月,据《包头市达茂旗2015年政府工作报告》,全旗 2014年共接待游客153.3万人(次),希拉穆仁草原为 主要的旅游目的地。旅游区样地内植被稀疏低矮,旅 游点内部地表基本裸露,周边植被沿道路、居住区呈 条带状和斑块状镶嵌分布,平均盖度约20%,高度不 足10 cm。

采样于 2014 年 7 月下旬进行, 取样前一周内无 大风和降水,在各样地内随机取样。采样时选取平整 地面,首先用剪刀将地面的植物剪去露出地表,使用 分层取土器^[26]平行于地表采集深度 0 ~ 2 cm 的表层 土样,当场装入塑料封口袋密封以备用。耕作区、围 封区、放牧区和旅游区 4 种样地分别有 20 个采样点, 样点为 1 m × 1 m 正方形,分别在正方形对角线两端 及中间采集 3 个重复样,在水利部牧区水利科学研究 所室内风干,将重复样混合后以四分法取对角线土约 150 g 装入塑封袋备测,共计 80 个土样。

土壤粒度预处理和测量在内蒙古农业大学沙地 生物资源保护与培育国家林业局重点开放性实验室 完成。实验前需对样品进行处理,自然风干后首先使 用最接近测量上限(3 500 um)的 6 目土壤筛去除直径 大于 3 350 µm 的粗颗粒,后分别称取 10 g 土样加入 50 ml 玻璃烧杯中, 再加入 45 ml III 级超纯水充分浸 没样品。随后加入 1~2 滴 30% H₂O₂ 溶液,静置 24 h 以于去除土样中的有机质。待到烧杯内无气泡产生 时,用电热板加热干燥样品,完全挥发反应剩余的 H₂O₂。待样品冷却后,再加入水,并加1~2 ml 10% HCI 溶液以溶解样品中的碳酸盐类物质,随后再静置 24 h,用滴管析出清液。使用 MIK-PH173 型 pH 计测 试样品的 pH 值,加入纯净水稀释 3~4 遍,直至 pH 呈中性后开始进行测量。土壤粒度测量使用英国 Malvern 公司生产的 Mastersizer 3000 型激光粒度分 析仪,配合适用于样品粒度相对较大或粒度分布极广 的测量的 Hydro LV 型大容量样品池, 仪器测量范围 0.01~3 500 µm,精确度优于 0.6%,精确度/可重复 性优于 0.5% 变量,重现性优于 1% 变量。每个样品 重复测量 3 次。测量过程中使用超声震荡 10 s 以分 散团聚体。

2.2 土壤粒度参数模型

测定完成后采用仪器自带软件的用户分级功 能划分土壤机械组成,以美国制土壤粒径分级标准 输出^[15]: 黏粒(<2 μ m)、粉粒(2 ~ 50 μ m)、极细砂 (50~100 μ m)、细砂(100~250 μ m)、中砂(250~500 μ m)、 粗砂(500~1 000 μ m)、极粗砂(1 000~2 000 μ m)和砾 石(>2 000 μ m)。并输出土壤颗粒累积体积分数为 5%、 10%、16%、25%、50%、75%、84%、90%、95% 所 对应的颗粒直径以备粒度参数的计算。

采用 Udden-Wenworth 粒级标准,根据 Kumdein 的算法进行对数转化,分别将先前输出的各土壤颗粒 累积体积分数对应的颗粒直径进行转换,变为利于计 算的*Φ* 值^[27-28],转换公式为:

$$\Phi = -\log_2 D \tag{1}$$

式中: D 为土壤颗粒直径(mm)。

采用 Folk-Ward 的图解法^[29]计算粒度参数:平均 粒径(d_0)、标准偏差(δ)、偏度(*SK*)与峰态(K_g)。参数 计算公式如下:

$$d_0 = \frac{1}{3} (\Phi_{16} + \Phi_{50} + \Phi_{84}) \tag{2}$$

$$\sigma_0 = \frac{(\Phi_{84} - \Phi_{16})}{4} + \frac{(\Phi_{95} - \Phi_5)}{6.6}$$
(3)

$$SK = \frac{\Phi_{16} + \Phi_{84} - 2\Phi_{50}}{2(\Phi_{84} - \Phi_{16})} + \frac{\Phi_5 + \Phi_{95} - 2\Phi_{50}}{2(\Phi_{95} - \Phi_5)}$$
(4)

$$K_g = \frac{\Phi_{95} - \Phi_5}{2.44(\Phi_{75} - \Phi_{25})} \tag{5}$$

平均粒径 d₀ 表征土壤粒度的平均分布情况,常 用在研究颗粒沉积规律和追踪颗粒移动过程中^[15]。 标准偏差 σ_0 表示土壤颗粒分布的离散程度,其值越 小表示土壤颗粒分布越集中,颗粒分选性越好[15]。 按照标准偏差 σ_0 取值大小一般划分为 7 个分选级别: $\sigma_0 < 0.35$, 分选性极好; $0.35 < \sigma_0 = 0.50$, 分选性好; 0.50<σ₀ 0.71, 分选较性好; 0.71<σ₀ 1.00, 分选性 中等; $1.00 < \sigma_0$ 2.00, 分选性较差; $2.00 < \sigma_0$ 4.00, 分选性差; $\sigma_0>4.00$, 分选性极差。偏度 SK 反映土壤 颗粒粒度频率曲线的对称性,表示土壤颗粒的粗细分 布特征^[15]。可将其划分为 5 个等级:-1.0 SK<-0.3, 极负偏;-0.3 SK<-0.1,负偏;-0.1 SK<0.1,近于 对称;0.1 SK<0.3,正偏;0.3 SK<1.0极正偏。峰 态 K_a是土壤颗粒粒度分布在平均粒度两侧集中程度 的参数,代表频率曲线尾部展开度与中部展开度的比 率,或表示土壤颗粒频率曲线两侧与中间部分分选性 之间的比值,可对土壤颗粒频率分布曲线峰形的宽窄 陡缓程度进行定量的衡量^[15]。一般而言, Kg 取值越

大,峰态尖窄程度越强,表明样品粒度分布越集中, 也说明至少有一部分颗粒物是未经环境改造而直接 进入环境的,可按其取值范围划分为6个峰态等级: K_g 0.67,很宽平;0.67< K_g 0.9,宽平;0.9< K_g 1.11,中等;1.11< K_g 1.56,尖窄;1.56< K_g 3.00, 很尖窄; K_g >3.00,极尖窄。

2.3 土壤粒度累积频率间平均距离的计算

土壤粒度累积频率分布间平均距离 *d* 可反映样 地间土壤质量差异状况,与土壤粒度累积频率曲线相 互印证,可为土壤粗化判断提供佐证^[30]。其计算公 式为:

$$d = \sqrt{\sum (P - \overline{P})^2 (K - 1)} \tag{6}$$

式中:*d* 为土壤粒度累积频率分布间平均距离;*P* 为 某种样地土壤粒度累积频率;*P* 为 4 种样地土壤粒度 累积频率平均值;*K*-1 为自由度,*K*=4。

2.4 分形维数的计算

分形维数 D 在表征土壤结构性质时应用广泛, 其值与土壤的不同大小粒径颗粒数量有关,因此其不 仅可以定量地表明土壤的结构特征,还可反映土壤含 水率、土壤肥力等指标,在土地退化方面的研究应用 很广^[31-32]。本文以 Mastersizer 3000 型激光粒度仪测 定的土壤不同径级颗粒的体积含量来计算体积分形 维数,计算方法为:

$$\frac{V(r < R_i)}{V_t} = \left(\frac{R_i}{R_{\max}}\right)^{3-D} \tag{7}$$

式中: D 为土壤分形维数; r 为土壤颗粒直径(mm);

R_i 为某一径级土壤颗粒直径(mm); *V*(*r*<*R_i*)为小于 *R_i* 径级颗粒的土壤颗粒体积百分含量(%); *V_i* 为各径级
 颗粒总体积百分含量(%); *R_{max}* 为最大颗粒直径(mm)。
 2.5 统计分析

采用 Excel 2007、Origin 9.1 软件进行数据整理、 计算分析、图表绘制,由 SPSS 19.0 软件对数据进行 单因素方差分析(One-Way ANOVA)、LSD 多重检验。

3 结果与分析

3.1 不同土地利用类型土壤粒度组成特征

由表1土壤粒度组成可知,本研究耕作区、围封 区、放牧区及旅游区4种土地利用类型土壤粒度组成 均表现为以砂粒和粉粒为主,砂粒平均体积百分含量 分别为 45.32%、64.61%、71.25% 和 85.13%, 对砂 粒进一步分析,耕作区极细砂平均含量极显著高于其 他 3 种样地(P<0.05), 围封后地表极细砂含量较放牧 区升高(P<0.05),旅游区极细砂平均含量最低,同放 牧区差异不明显(P>0.05)。粉粒平均百分含量除旅游 区显著较低外(P<0.05),其余3种样地粉粒平均百分 含量均在 20% 以上,耕作区中粉粒平均百分含量最 高,为54.20%,显著高于其他3种样地(P<0.05),围 封后粉粒含量较放牧区升高(P<0.05)。耕作区表层砾 石含量为0,其余3种样地表层土壤砾石平均含量均 显著升高(P<0.05),但彼此间差异不显著(P>0.05)。 各样地黏粒含量均未超过 1%,彼此间差异显著 $(P < 0.05)_{o}$

	表 1 希拉穆仁荒漠草原土壤粒度组成(%)	
Table 1	The composition of soil particles in Xilamuren desert steppe (%	6)

Tuble 1 The composition of son particles in Anamarch deservices (70)									
	样地	黏粒	粉粒	砂粒					
				极细砂	细砂	中砂	粗砂	极粗砂	
	耕作区	0.81 ± 0.11 a	$54.20\pm7.95~a$	28.70 ± 3.86 a	13.13 ± 1.96 a	$3.37\pm0.37~b$	$0.12\pm0.02~c$	0 c	0 b
	围封区	$0.28\pm0.05~b$	$30.10\pm5.06\ b$	$18.72\pm5.32~b$	11.49 ± 2.58 a	$7.40\pm1.66~b$	$13.76\pm3.38~b$	$13.24\pm2.25~b$	5.16 ± 0.78 a
	放牧区	$0.14\pm0.03~c$	$22.99\pm5.32~c$	11.98 ± 3.26 c	$13.48 \pm 4.10 \text{ a}$	$15.35\pm4.08~a$	$15.87\pm5.13~b$	$14.57\pm4.12~b$	5.32 ± 1.95 a
	旅游区	$0.05 \pm 0.01 \text{ d}$	9.41 ± 1.44 d	6.76 ± 0.85 c	10.03 ± 2.78 a	16.70 ± 3.49 a	24.11 ± 3.70 a	27.53 ± 4.69 a	5.41 ± 1.61 a

注:表中同列不同小写字母表示各土地利用类型间差异显著(P<0.05)。

3.2 不同土地利用类型土壤粒度参数

由表 2 可知本研究耕作区、围封区、放牧区和旅 游区 4 种样地平均粒径数值依次变大,按照 Folk-Ward 图解法划分标准,分别属于粉粒、细砂、细砂 和中砂,彼此间差异显著(P<0.05)。土壤标准偏差依 次为围封区>放牧区>旅游区>耕作区,其分选级别分 别为分选性极差、分选性极差、分选性差、分选性差。 偏度等级分别为负偏、近于对称、正偏和极正偏。除 围封区外,其余 3 种样地表土频率曲线形态不对称, 耕作区样地波峰偏向细粒度一侧,结合表1的土壤粒 度组成情况,耕作区表层土壤以较细的粉粒和极细砂 含量为主,较粗的中砂、粗砂含量很少,且无极粗砂 和砾石存在,颗粒分布不对称,说明土壤颗粒以细组 分为主。放牧区和旅游区波峰均偏向粗粒度一侧,细 粒一侧有一低的尾部,颗粒以粗组分为主,其中旅游 区土壤颗粒组成较放牧草地更粗,颗粒组成以砂粒为 主,仅含有少量黏粒、粉粒和极细砂,土壤颗粒分布 极不对称,总体偏向于粗颗粒的一侧,人为扰动对土 壤粗化作用明显。围封区经过多年的自然恢复,表层 土壤中细粒物质如黏粒、粉粒和极细砂含量均较放牧 区有所增加,粗颗粒含量下降,颗粒组成复杂且向均 匀化的方向发展,土壤粒度粗细分配近于对称。

表 2 希拉穆仁荒漠草原表层土壤粒度参数

Table 2	Sun	ace son part	iele parameter	s of Analiurei	i desert steppe
粒度参	数	耕作区	围封区	放牧区	旅游区
平均粒径	$d_{0}4$	$.80 \pm 0.06$ a	$2.86\pm0.08~\text{b}$	$2.44\pm0.19~c$	$1.07\pm0.11~\text{d}$
标准偏差	σ_0	1.68 ± 0.07	2.70 ± 0.12	2.46 ± 0.43	1.93 ± 0.36
偏度 SK	<u> </u>	-0.29 ± 0.04	0.06 ± 0.02	0.24 ± 0.05	0.49 ± 0.07
峰态 K _s	ç	1.03 ± 0.03	0.80 ± 0.07	0.84 ± 0.12	1.07 ± 0.20
分形维数	D 2	3.39 ± 0.05 a	$2.26\pm0.03~\text{b}$	$2.20\pm0.08~b$	$1.88\pm0.05~\text{c}$
注:	表中	同行不同小	\写字母表示	各土地利用类	型间差异显著
(P < 0.05)					

4 种样地峰态分属中等、宽平、宽平和中等,耕 作区和旅游区两种样地土壤颗粒分布较围封区和放 牧区集中,由表1可知,耕作区样地中粉粒为优势颗 粒,这与其偏度为负偏一致,表明颗粒组成向细粒物 质集中,而旅游区表现为向粗颗粒集中,砂粒含量占 优势,其偏度也表现为极正偏。放牧区和围封区两种 条件下的草地表层土壤峰态均表现为宽平,两种土壤 均无占据绝对优势的颗粒,分布相对耕作区和旅游用 地较复杂,与两种土壤偏度的绝对值相对较小相呼 应。围封11年后,草地表层土壤峰态值仍有所降低, 颗粒组成较分散并有所细化。耕作区、围封区、放牧 区和旅游区表层土壤分形维数依次减小。土壤分形维 数数值大小与黏粒、粉粒等细颗粒含量呈正相关,与 砾石、极粗沙等粗颗粒含量呈负相关关系,这也与表 1中4种样地颗粒组成粗细情况一致。

分别以 4 种样地每个采样点的粒度参数制作粒 度参数散点图,可直观地观察4种样地表土粒度参数 的分布情况。由图 3 可看出耕作区和旅游区同围封 区、放牧区两种草地的粒度参数存在明显界限,各粒 度参数散点图均能对其进行明显的区分,围封区和放 牧区两种草地间差异不大,在平均粒径-偏度、标准 偏差-偏度、偏度-分形维数和峰态-偏度散点图可进 行明显识别,其他散点图均无法严格区分。从粒度参 数散点图中可以看出旅游区各粒度参数分布范围最 大,放牧区次之,其次为围封区,耕作区分布最集中。 3.3 不同土地利用类型土壤颗粒频率分布曲线

土壤颗粒频率分布曲线常用于分析颗粒大小分 布情况,不仅可定性地获取偏度、峰度等信息,还可 以从曲线的波峰属性判断颗粒的沉积动力及物源情 况。分别以耕作区、围封区、放牧区和旅游区4种样 地的表层土壤粒径平均值制作颗粒频率分布曲线(图 4A),可以看出 4 种样地粒径分布存在差异,其中耕 作区和旅游区间差异最明显,并基本呈单峰分布。围 封区和放牧区两种草地差异相对较小,且均表现为双 峰型。耕作区的波峰在 50 ~ 60 μm 附近,两种草地 的第一个波峰略有滞后,约在 60 ~70 μm。旅游区在 1 000 μm 附近出现波峰,两种草地的第二个波峰也在 该处出现,旅游区在 70 μm 附近还存在有一不甚明显 的起伏。放牧区的波谷出现在 200 μm 附近,而围封 区的波谷出现稍晚,在 250 μm 附近。4 种样地在 50 ~ 70 μm 附近均出现波峰,但波峰高度随地表裸露程度 增大而依次降低,细颗粒损失依次增多。放牧区波 谷所在处对应的颗粒粒径小于围封区,旅游区波谷 出现更早,对应颗粒粒径更小,细粒物质含量较低。

累积频率分布曲线可以反映土壤颗粒的分布情况,一般曲线越陡峻,颗粒分布越均匀。分析4种样 地表层土壤的累积频率分布曲线(图 4B)可知,4种样 地表土分布均匀程度表现为耕作区最好,且颗粒组成 较细。围封区与放牧区草地介于耕作区和旅游区之 间。旅游区表土累积分布曲线开始时变化较缓慢,但 约在 300 μm 后开始变陡,并迅速升高,说明颗粒多 集中在大于 300 μm 范围内,结合表 2 中旅游区土壤 标准偏差较大,可知颗粒分选性相对于草地较好,颗 粒均较粗且分选性较好,这也印证了旅游区表土缺乏 植被覆盖,风蚀较严重。

3.4 不同土地利用类型地表风蚀颗粒判别

4 种样地分布在 1.0 km × 1.5 km 范围内,样地间 距离很近,各样地表层土壤颗粒频率分布曲线(图 4A) 虽呈现出不同类型,但波峰和波谷的出现表现出一定 的一致性,土壤母质差异不大。土壤粒度累积频率间 平均距离反映了样地间颗粒差异情况,可定性描述易 风蚀颗粒范围,本研究中 4 种样地土壤粒度累积频率 间平均距离(图 4B)在粒径为 100 ~ 250 μm 区间内较 大,可认为研究区易风蚀颗粒范围在 100 ~ 250 μm。一 般研究认为风蚀颗粒运动以跃移为主,100 ~ 150 μm 大 小颗粒是最易发生跃移的粒径范围^[33-34],本研究得 出的风蚀颗粒范围偏向较粗的颗粒,研究区多年平均 >6 m/s 的起沙风可达到 56.8 次/a,且整体土壤粒径 较粗,相比吴正等人^[33]研究的粒度组成较细的风沙 土,风蚀颗粒可能亦相对偏大。

4 讨论

研究区内耕作样地海拔相对低于其他 3 种样地, 长期的侵蚀过程使得高处的细粒物质被搬运至此,形 成较厚且细的土壤层,外业调查中发现土层厚度可达 50~100 cm。耕地土壤各粒度参数分布均较集中,说

图 3 粒度参数散点图 Fig. 3 Scatter diagram of particle size distribution

图 4 土壤颗粒频率分布曲线 Fig. 4 The particle size distribution curves

明其土壤颗粒均一性较好。分形维数作为衡量土地退 化程度的指标之一,可反映土壤质量的变化情况。耕 作区土壤分形维数最大,土壤粒度组成最细,多为粉 粒和极细砂,耕作开垦虽极易导致表土细粒物质被吹 蚀^[35],但耕作区在秋季收获后即采取留茬覆盖措施, 每年5月上旬进行翻耕,此时研究区风季已过,土壤 中细颗粒得以较多地保留。同时耕作区土壤层较厚, 翻耕后可将下层土壤带至表层,对细颗粒形成补给, 使得样地内颗粒组成始终保持在较细的水平。非耕作 期采取留茬覆盖的保护措施,不仅可防止土壤细粒物 质被吹蚀,还兼具保水功能,这对作物生长十分有利。 同时作物生长也在改良土壤,形成宝贵的团粒结构, 促进保水保肥,提高土体的抗风蚀能力^[36],这对于 土壤本身较干旱贫瘠的阴山北麓地区尤为重要^[4]。

近年来,希拉穆仁草原大力发展旅游业,夏季正 值植被生长旺季,而此时游客的大量涌入,对地表践 踏作用强烈,严重干扰植被生长,形成众多围绕着旅 游点的呈斑块状的裸斑地,地表细粒物质极易被吹 蚀,同时缺乏植被的保护的土层蒸发加剧,土体变 干逐渐疏松,一旦再次践踏形成破口,风蚀将向表 土以下发展并逐渐扩张,使得旅游区土壤粗化愈加 严重^[37]。研究区中旅游区土壤分形维数最小,土壤 粗化最明显,中砂、粗砂、极粗砂含量较高,但颗粒 组成分散,无绝对优势颗粒,其各粒度参数也分布较 离散。因此当地相关部门应在发展旅游业的同时考虑 划定专门的旅游用地,在保护地表土壤的同时提高土 地利用效率。

希拉穆仁草原为典型的荒漠草原,气候干旱少雨,土壤物理性砂粒质量分数基本在50%~80%,常年的放牧活动对土壤的踩踏使得表土结构松散,冬春季节土壤含水率一般在3%~4%,此时风力强劲又缺乏地表覆盖,干燥疏松的土壤极易发生风蚀^[38-40],

导致土壤逐渐粗化。经过十余年的休养生息,围封区 内植被高度和盖度相对于放牧区均迅速增加,增大了 地表粗糙度,降低上方气流的吹蚀能力,有助于截留 气流中的细粒物质,对表层土壤中的细颗粒可起到一 定的保存作用^[17]。围封区与放牧区草地相比分形维 数有所增大,土壤颗粒组成有所细化,但围封改善土 壤结构过程缓慢^[41-42],对土壤的细化仍未达到显著 水平(P>0.05)。由图3粒度参数散点图也可知其各粒 度参数差异较小,仅平均粒径-偏度、标准偏差-偏度、 偏度-分形维数和峰态-偏度散点图可将两种草地表 土进行明显区分。

研究区耕作样地和旅游区土壤颗粒分布较为特殊,耕作区由于地势较低,利于细颗粒的大量堆积,加之人为采取留茬覆盖保护措施,颗粒组成最细,而旅游区人类活动频繁,对土壤颗粒粗化作用甚大。围封区和放牧区2种样地地貌类型一致,受人为干扰相对于耕地和旅游区较小,同时植被高度、盖度差异较大,孙悦超等^[43]认为阴山北麓草地有效防风蚀的植被盖度为 50%,围栏封育区植被盖度远超此临界值,而放牧区未达到最低盖度,为重度退化水平^[24]。因此本文以此2种样地土壤表层颗粒为对象,进一步探究在近自然状态下风蚀对地表土壤粗粒化的影响。

由表1可知围封区表层土壤黏粒、粉粒、极细砂 平均含量均显著高于放牧区(P<0.05)。细砂含量虽有 所降低,但差异不显著(P>0.05)。随着颗粒径级变大, 除中砂含量显著偏低(P<0.05)外,颗粒更粗的粗砂、 极粗砂等含量均无显著变化,细砂表现较为特殊,进 一步对围封区和放牧区土壤颗粒频率曲线(图 5A)分析 可知,二者在134 µm 处发生交叉,细砂(100~250 µm) 在此处被分为两部分(100~134 µm、134~250 µm), 围封区中较细部分颗粒(100~134 µm)含量多于放牧 区,而较粗部分颗粒(134~250 µm)表现相反,使得

壤

图 5 两种突空草地工壤积粒则举方节曲线 Fig. 5 The particle size distribution curves of grassland

两种草地表土细砂含量总体差异减小。方差分析结果 显示两种草地较细部分颗粒含量差异不显著(P> 0.05), 而较粗部分仍差异显著(P<0.05)。两种草地累 积体积含量的距离(图 5B)在 134 µm 达到最大, 岳高 伟等[44]分析了颗粒在流场中的释放过程,认为随颗粒 粒径的增大,起动风速先减小后增加,120~140 µm 粒 径范围内颗粒最易起动,这与本研究结果基本吻合。 同时围封区和放牧区土壤颗粒频率曲线显示中砂 (250~500 µm)差距较大,方差分析结果也显示二者 差异显著(P<0.05),从频率分布曲线差值可看出两种 草地在 454 µm 附近最大,可认为 454 µm 附近颗粒也 易被风蚀。李晓丽等人^[45]的研究认为阴山北麓耕地发 生跃移颗粒粒径主要在 75~200 μm 和 250~425 μm, 与本研究结果基本一致, 仅较粗部分跃移颗粒偏大, 这可能是草地颗粒级配相比耕地较粗所致。综上所 述,可认为研究区表层土壤中 134 um 和 454 um 附 近颗粒为易风蚀颗粒。

综合而言,研究区不同类型土地表土粗化的原 因,不仅有气候、土壤母质的影响,人类活动也是重 要因素。当地决策部门应继续在农业耕作区域推广留 茬覆盖等保护措施,减少土地翻耕,从而有效防止土 壤风蚀的发生。围封区相比放牧区表层土壤有所细 化,但变化相对缓慢,需要长期坚持。同时应适度控 制旅游人数,开辟专门的旅游区域,以防止土壤粗化 继续扩展。

5 结论

通过对希拉穆仁荒漠草原常见的农业耕作区、围 封区、放牧区及旅游区地表(0~2 cm)土壤的粒度组 成进行分析,得到以下结论:

1)希拉穆仁荒漠草原表层土壤粒度组成以砂粒 和粉粒为主,其中砂粒含量在45.32%~85.13%,土 壤粒度组成从细到粗依次为耕作区、围封区、放牧区 和旅游区,颗粒分形维数分别为 2.39、2.26、2.20、 1.88,土壤逐渐粗化。土壤分选性均较差。偏度分别 为负偏、近于对称、正偏和偏正偏,差异明显,偏度 可作为有效的粒度参数指标。峰态分属中等、宽平、 宽平和中等,均较为平缓。

2) 土壤粒度分布频率曲线和粒度累积频率间平均距离显示研究区粒径为 134 μm 和 454 μm 附近颗粒为易风蚀颗粒。各粒度参数及分维值均显示放牧和旅游引起希拉穆仁草原表层土壤粗化,土壤粒度分布范围变宽,整体向粗粒化方向发展。当地应坚持围封禁牧,开辟专门的旅游区域,继续推广耕地留茬覆盖等保护措施,防止土壤粗化范围扩展。

参考文献:

- [1] 吴波, 苏志珠, 陈仲新. 中国荒漠化潜在发生范围的修 订[J]. 中国沙漠, 2007, 27(6): 911–917, 1 093–1 094
- [2] 韩芳,刘朋涛,牛建明,等. 50a 来内蒙古荒漠草原气候 干燥度的空间分布及其演变特征[J]. 干旱区研究, 2013, 30(3):449-456
- [3] 安慧, 徐坤. 放牧干扰对荒漠草原土壤性状的影响[J]. 草业学报, 2013, 22(4): 35–42
- [4] 龚晨,安萍莉,琪赫,等. 阴山北麓地区农作制度演变
 历程及演变规律研究[J]. 干旱区资源与环境,2007,21(2):
 66-70
- [5] 龚子同,张之一,张甘霖.草原土壤:分布、分类与演化 [J]. 土壤,2009,41(4):505-511
- [6] 赵羽.内蒙古土壤侵蚀研究[M].北京:科学出版 社,1989
- [7] 高雪峰,韩国栋. 放牧对羊草草原土壤氮素循环的影响[J]. 土壤, 2011, 43(2): 161–166
- [8] 李文杰, 乌铁红, 李晓佳, 等. 内蒙古希拉穆仁草原旅 游地景观格局动态变化[J]. 地理科学, 2013, 33(3): 307-313
- [9] 陈小红,段争虎,谭明亮,等.沙漠化逆转过程中土壤
 颗粒分形维数的变化特征——以宁夏盐池县为例[J]. 干
 旱区研究,2010,27(2):297–302

- [10] Chepil W S. Factors that influence clod structure and erodibility of soil by Wind: II. Water-Stable Structure[J]. Soil Science, 1953, 76(5): 389–400
- [11] 蒙仲举, 高永, 王淮亮, 等. 基于土壤粒度和大风日数 的风蚀风险预报[J]. 农业工程学报, 2015, 31(6): 186–192
- [12] 李学林,李福春,陈国岩,等.用沉降法和激光法测定 土壤粒度的对比研究[J].土壤,2011,43(1):130–134
- [13] 黄文敏, 伍永秋, 潘美慧, 等. 西藏安多剖面沉积物粒 度特征及环境意义[J]. 中国沙漠, 2014, 34(2): 349–357
- [14] Elisabeth D, Gregori L, Kai H, et al. Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China[J]. Quaternary Research, 2013, 79(3): 325–336
- [15] 高广磊,丁国栋,赵媛媛,等.生物结皮发育对毛乌素
 沙地土壤粒度特征的影响[J].农业机械学报,2014,45(1):
 115-120
- [16] 唐丽, 董玉祥. 华南海岸现代风成沙与海滩沙的粒度特 征差异[J]. 中国沙漠, 2015,35(1): 14-23
- [17] 杨立辉,叶玮,郑祥民,等.河漫滩相沉积与风成沉积 粒度判别函数的建立及在红土中应用[J].地理研究, 2014,33(10):1 848-1 856
- [18] 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复过程中土 壤颗粒分形特征[J]. 地理研究, 2007, 26(3): 518-525
- [19] 李宗超, 胡霞. 小叶锦鸡儿灌丛化对退化沙质草地土壤 孔隙特征的影响[J]. 土壤学报, 2015, 52(1): 242–248
- [20] 蔡晓布,彭岳林,魏素珍,等.高寒草原土壤有机碳与 腐殖质碳变化及其微生物效应[J].土壤学报,2014,51(4): 834-844
- [21] 红梅, 敖登高娃, 李金霞, 等. 荒漠草原土壤健康评价[J]. 干旱区资源与环境, 2009, 23(5): 116–120
- [22] 吕桂芬, 吴永胜, 李浩, 等. 荒漠草原不同退化阶段土 壤微生物、土壤养分及酶活性的研究[J]. 中国沙漠, 2010, 30(1): 104–109
- [23] 曹祥会,龙怀玉,雷秋良,等.河北省表层土壤可侵蚀 性K值评估与分析.土壤,2015,47(6):1192-1198
- [24] 李兰花.希拉穆仁草原的退化机理及现状评价研究[D]. 呼和浩特:内蒙古农业大学,2005
- [25] 罗志国.希拉穆仁草原旅游发展利益相关者分析[D].长沙:中南林业科技大学,2008
- [26] 高永, 虞毅, 汪季, 等. 一种可以分层采取土壤样品的 取土器[P]. 内蒙古:CN201926567U, 2011-08-10

- [27] 丁国栋. 风沙物理学[M]. 北京: 中国林业出版社,2010
- [28] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M].北京: 地质出版社, 1978: 44–45
- [29] Folk R L,Ward W C. Brazos river bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3–26
- [30] 闫玉春, 唐海萍, 张新时, 等. 基于土壤粒度分析的草 原风蚀特征探讨[J]. 中国沙漠, 2010, 30(6):1 263-1 268
- [31] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土 壤分形特征[J]. 科学通报,1993, 38(20): 1 896–1 899
- [32] 高广磊,丁国栋,赵媛媛,等.四种粒径分级制度对土 壤体积分形维数测定的影响[J].应用基础与工程科学学 报,2014,22(6):1060-1068
- [33] 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987
- [34] 刘大有, 董飞, 贺大良. 风沙二相流运动特点的分析[J]. 地理学报, 1996, 51(5): 434–444
- [35] 王仁德, 肖登攀, 常春平, 等. 改进粒度对比法估算单 次农田风蚀量[J]. 农业工程学报, 2014, 30(21): 278-285
- [36] 南岭, 杜灵通, 展秀丽. 土壤风蚀可蚀性研究进展[J]. 土壤, 2014, 46(2): 204-211
- [37] 殷玲,张德平,成永会,等.车辆碾压对沙质草原表土物 理力学性质的影响[J].中国沙漠,2015,35(5):1177-1182
- [38] 海春兴,赵明,郝润梅,等. 阴山北麓不同用地方式下 春季土壤表层水分变化分析[J]. 干旱区资源与环境, 2005,19(5):150–154
- [39] 李晓佳, 海春兴, 刘广通. 阴山北麓不同用地方式下春 季土壤可蚀性研究[J]. 干旱区地理, 2007, 30(6): 926–932
- [40] 董治宝, 陈广庭. 内蒙古后山地区土壤风蚀问题初论[J]. 土壤侵蚀与水土保持学报, 1997, 3(2): 84–90
- [41] 单贵莲, 徐柱, 宁发, 等. 围封年限对典型草原植被与 土壤特征的影响[J]. 草业学报, 2009, 18(2): 3-10
- [42] Su Y Z, Li Y L, Cui J Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China[J]. Catena, 2005, 59(3): 267–278
- [43] 孙悦超,陈智,赵永来,等. 阴山北麓农牧交错区草地 土壤风蚀测试[J]. 农业机械学报,2013,44(6):143–147
- [44] 岳高伟, 贾慧娜, 蔺海晓. 土壤风蚀过程颗粒释放机理 研究[J]. 干旱区地理,2012,35(2):248-253
- [45] 李晓丽, 申向东. 裸露耕地土壤风蚀跃移颗粒分布特征 的试验研究[J]. 农业工程学报, 2006, 22(5): 74–77

Particle Size Characteristics of Wind Erosion Surface Soil in the Desert Steppe

DING Yanlong¹, GAO Yong¹, MENG Zhongju^{1*}, Narengerile², HUANG Xin¹, SUN Xiaorui¹, WU Hao¹, DANG Xiaohong¹, WANG Meng¹

(1 Desert Science and Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; 2 Xianghuang Qi Nursery Garden, Xilinguole League, Inner Mongolia 013250, China)

Abstract: The topsoil samples of 0 - 2 cm were collected from farming land, fenced grassland, grazing grassland and tourist area in Xilamuren desert steppe and used to investigate soil particle size characteristics. First, the soil particle size distributions were identified by laser diffraction technique. Second, the particle size parameters of average particle size, standard deviation, skewness, kurtosis, and fractal dimension were subsequently calculated. And then, the erosion particle range was discussed. The results indicated that: 1) the topsoil particles in desert steppe were mainly composed of sand and silt, while the clay content was extremely low. Soil particle size followed the order: farming land < fenced grassland < grazing grassland < tourist area. Soil particle size distributions were all in poor sorting. The kurtosis was medium, wide flat, wide flat and medium for farming land, fenced grassland, grazing grassland and tourist area, respectively. The fractal dimensions were 2.39, 2.26, 2.20 and 1.88 for these land using types. Correspondingly, the skewness can be used as an effective particle size parameter. 2) Based on the analyses of frequency curves of soil particle size and the average distance, it was found that when soil particles were about 134 µm and 454 µm, which are the easiest to be erode by wind under near nature conditions. The particle size parameters and fractal dimension showed that the grazing and tourism accelerated wind erosion of topsoil in this region. Soil particle distribution was becoming wide, and soil coarse particles increased gradually.

Key words: Particle size characteristics; Wind erosion; Desert steppe