DOI: 10.13758/j.cnki.tr.2017.02.006

模拟硝田土壤铁和硫的形态转化特征及其影响因素

杨 \mathbb{R}^1 ,李 \mathbb{P}^2 ,袁大刚^{1*},李小英¹,陈 m^1 ,王乙焱¹,陈冠桦¹

(1 四川农业大学资源学院,成都 611130;2 雅安市雨城区林业局,四川雅安 625000)

摘 要:采用室内培养试验,在确定模拟硝田土壤硫酸钠含量的基础上,观测并探讨落干/淹水状况、有机物质 种类与数量对模拟硝田土壤铁和硫形态转化特征的影响。结果表明:全铁(Fet)和游离铁(Fed)受落干/淹水状态和有机 物质种类与数量的影响均不显著,而活性铁(Feo)、络合铁(Fep)、亚铁离子(Fe(II))及有效铁(Fea)受淹水及有机物质数 量的显著影响,Fe(II)、Fea 还受有机物质种类的显著影响;硫形态转化同时受淹水及有机物质种类与数量的影响;土 壤铁、硫形态转化一方面通过有机物质与铁、硫的直接作用实现,一方面通过改变土壤氧化还原电位(Eh)及还原性物 质总量(TARM)等氧化还原状况实现;铁与硫的形态转化也表现出一定的耦合关系。

关键词:模拟硝田土壤;铁;硫;落干/淹水;有机物质

中图分类号: S153 文献标识码: A

四川是钙芒硝(CaSO₄·Na₂SO₄)资源最丰富的省 份之一,约占全国储量的 72.15%^[1]。钙芒硝矿主要 分布于成都以西的新津、眉山市的彭山、洪雅、丹棱 及雅安市的名山等地区^[2]于中白垩统夹关组^[3]、上白 垩统灌口组^[4]、下第三系名山组^[5]等地层。为了将资 源优势转化为经济优势,钙芒硝的开采与加工成为这 些市县工业经济发展的重要产业。然而在发展经济的 同时,部分地方钙芒硝生产中的矿渣场淋滤液和制硝 车间废水导致地表水和地下水中的 SO²⁻、Na⁺、矿化 度超标,使其无法饮用,或作为农田灌溉用水直接 导致这些地区土壤局部盐渍化、农作物减产甚至绝 收^[6-7]。硝田便是潜育水稻土亚类下矿毒田土属中受 芒硝(Na₂SO₄)危害的土种^[8]。

铁是土壤中除铝之外含量最高的金属元素,同时,可溶性硫酸盐含量高是硝田的重要特点。硫和铁分别是植物必需的中量和微量营养元素^[9],也都是变价元素,容易受环境条件影响而发生氧化还原反应,影响其有效性,进而影响作物的生长发育^[10-12]。朱玉祥等^[13]认为在淹水还原条件下,土壤铁锰氧化物易被还原,形成亚铁离子 Fe(II),同时增加氧化铁的活化度^[14]。在淹水还原条件下添加有机物质(如淀粉、纤维素等)后,有机物质作为电子供体对铁的异化还原也具有促进作用^[15],其中有机配体与 Fe(III)/Fe(II)等金属离子发生络合反应,改变金属电对的电极电

位,同时土壤中的铁锰氧化物颗粒或包膜也可被其还 原、络合和溶解^[16],进而增强其活性和生物有效性。 土壤中硫的含量主要受有机质、物理性黏粒含量、氧 化还原电位(Eh)和 pH 等因素的影响^[17]。在淹水还原 条件下,土壤中硫酸盐还原菌(sulfate reducing bacteria, SRB)活性较高,可将高价态硫还原成低价态硫,从 而形成各种硫化合物^[18-19]。同时,土壤硫形态也与 有机质之间有着密切的关系^[20],有机物料的施用给 SRB 补充额外的电子供体和能源,因而促进了硫化 物的生成^[21-22]。研究还表明,土壤铁与硫之间存在 耦合关系,在还原条件下高价态的铁和硫同是竞争电 子受体^[23],硫酸盐与异化铁还原速率以及 Fe(II)的最 终积累量都有密切的关系;在厌氧环境下添加硫酸盐 后,Fe(II)的最终积累量明显增加^[24],同时 Fe(II)的形 成也会加速高价态硫的还原过程^[25]。

然而,作为低产土壤,硝田的铁、硫转化特征及 其耦合关系几乎未见报道。鉴于湿润地区芒硝易于淋 失的特点,本文以模拟硝田为研究对象,研究其铁和 硫的转化特征、耦合关系及其影响因素。

- 1 材料与方法
- 1.1 供试材料

供试土壤采自于四川省洪雅县余坪镇。采样点地 处 103°29′08.72″E, 29°53′11.11″N,属中亚热带湿润

基金项目:科技部基础性工作专项项目(2014FY110200A12)、国家自然科学基金面上项目(41371230)和大学生科研兴趣计划项目资助。 * 通讯作者(gangday@sohu.com)

作者简介:杨汛(1994—),女,四川眉山人,硕士研究生,主要从事土壤资源可持续性利用研究。E-mail: youngxun87@163.com

气候,年均降雨1435.5 mm,年平均气温16.6℃,年 均日照1006.1 h,年无霜期307 d。供试土壤为该区 非硝田土壤,采样时先去除表土5 cm 左右,多点混 合采集5~20 cm 深度土壤。样品经自然风干,挑去 石块和植物根系,磨细过2 mm 筛备用。

试验用水稻及玉米秸秆均来自供试土样采集地, 用粉碎机粉碎后备用。

硫酸钠(Na₂SO₄, 纯度≥99%)等由成都市科龙化 工试剂厂生产,分析纯。

1.2 试验设计

1.2.1 模拟硝田土壤 Na₂SO₄ 含量的确定试验 称 取 150.00 g 风干土若干份,分别按 0、0.2、1、5、25、 125 g/kg^[26]加入 Na₂SO₄ 混匀后,置于体积为 150 ml 的三角瓶中,再加入无 CO₂ 的去离子水 150.00 g,迅 速塞紧橡皮塞,于 25℃恒温避光培养 30 d 后测定土 壤电导率(EC)等指标,同时设置 3 组重复。根据测定 结果确定模拟硝田土壤 Na₂SO₄ 含量,以供后续试验 使用。

1.2.2 落干/淹水状况对模拟硝田土壤铁、硫转化的 称取 150.00 g 风干土若干份, 加入 1.2.1 影响试验 试验所确定梯度的 Na₂SO₄ 混匀后(即为模拟硝田土 壤),设置3个处理,分别为: 不做任何处理(不加 入任何水分,记作 CK1); 落干状态(加入无 CO₂ 的去离子水,并保持其含水量为田间持水量,Drying condition, 记作 DC); 淹水状态(加入无 CO₂ 的去 离子水,并保持水土比为1:1,Submergence condition, 记作 SC)。其中 CK1 和 DC 两个处理方式为三角瓶口 覆盖留有多个小孔的塑料薄膜,而 SC 处理用橡皮塞 密封。于25℃恒温避光培养30d后测定各形态铁含 量,包括全铁(Fet)、游离铁(Fed)、活性铁(Feo)、络 合铁(Fep)、Fe(II)和有效铁(Fea);测定各形态硫含量, 包括全硫(St)、吸附性硫(Sab)、水溶性硫酸根(SO_4^{2-}) 和有效硫(Sav);测定氧化还原状况,包括 Eh 和还原 性物质总量(TARM)。每处理3个重复。

1.2.3 有机物质种类与数量对模拟硝田土壤铁、硫转化的影响试验 在模拟硝田土壤中,再分别加入水稻秸秆及玉米秸秆并混匀,各自的添加量分别为0、10、20、40 g/kg(即CK2、T1、T2、T3 共4个处理),再按水土比1:1,加入无CO2的去离子水150.00g,迅速塞紧橡皮塞,其他处理及测定同1.2.2。

1.3 测定方法

土壤 EC 用 DDS-608 型电导仪和 DJS-1C 电导电 极直接测定^[26]。土壤 Fet 采用 HF-HNO₃-HClO₄ 消煮^[28]、 Fed 采用 DCB 浸提、Feo 采用酸性草酸--草酸铵浸提、 Fep 采用焦磷酸钠浸提^[27]、Fe(II)采用硫酸铝浸提^[28]、 Fea 采用 DTPA 溶液浸提^[26],消煮液或浸提液中的铁 用邻菲罗啉比色法测定^[27]。土壤 St 采用 HF-HNO₃-HClO₄常压分解提取、Sab 采用磷酸二氢钠浸提^[29]、 SO²⁻按水土比为 5:1 浸提、Sav 采用氯化钙浸提^[26], 浸提液中的硫用硫酸钡比浊法测定。Eh 用铂电极去 极化法测定,TARM 采用硫酸铝浸提–重铬酸钾氧化 法测定^[28]。

1.4 数据处理

采用 Excel2010 软件进行常规统计分析与制图, 采用 SPSS19.0 软件进行方差分析、多重比较和相关 分析。

2 结果与讨论

2.1 模拟硝田土壤 Na₂SO₄含量的确定

土壤 EC 在 $0.8 \sim 1.6$ S/m 时,土壤盐渍化程度为 重盐土^[26],据此,将相应的土壤 Na₂SO₄含量作为模 拟硝田土壤的 Na₂SO₄外源添加水平进行后续实验。 从图 1 可知,加入 25 g/kg 的 Na₂SO₄培养后,土壤 EC 为 0.96 S/m。因此,后续试验土壤中 Na₂SO₄含量 均设置为 25 g/kg。

Fig. 1 Effects of different additive Na₂SO₄ contents on soil EC

2.2 落干/淹水状态及有机物质对模拟硝田土壤 铁转化特征的影响

2.2.1 落干/淹水状态 图 2 表明, 各形态铁含量存 在较大差异:Fet>Fed>Feo>Fe(II)>Fep>Fea。方差分析 表明, DC、SC处理对土壤 Fed 浓度变化影响不显著; 而对于土壤 Fet 含量, 尽管统计分析 DC 处理显著高 于 CK1 处理,但从标准差来看,可能是重复间差别较 大引起的。与 CK1 处理相比, DC 和 SC 处理的 Fe(II) 显著增加,分别是 CK1 处理的 14 倍和 40 倍,说明淹 水使 Fe(II)含量增加。土壤 Feo、Fep、Fea 含量也有类

壤

似的现象,但增幅没有 Fe(II)含量显著。对于土壤 Feo 含量,CK1 处理为 0.80 g/kg,DC、SC 处理分别是 CK1 处理的 1.1 倍、1.2 倍;对于土壤 Fep 含量,CK1 处理 为 0.03 g/kg,DC、SC 处理分别是 CK1 处理的 3.1 倍、 3.6 倍;对于土壤 Fea 含量,CK1 处理为 1.5 mg/kg, DC、SC 处理分别是 CK1 处理的 2.4 倍、3.6 倍。王图 锦等^[30]、徐小逊等^[31]研究表明土壤在淹水厌氧条件 下,铁的异化还原过程强烈,导致土壤 Feo 和 Fea 含 量增加^[32]。同时,于天仁等^[33]也认为土壤 Feo 含量较 高的水稻土其 Fep 含量也较高。本次试验结果也能说 明上述结论。因此,淹水还原状况能够增强硝田土壤 铁素的有效性,改善作物因缺铁而失绿的现象。

2.2.2 有机物质种类与数量 图 3 表明,加入水稻 秸秆或玉米秸秆后,对于不同数量的同一种类的有机 物质,土壤 Fet、Fed 含量间差异不显著,且同一数量 的不同种类有机物质处理间也不存在显著差异。因此, 可认为有机物质的种类与数量对土壤 Fet、Fed 含量的 变化均无显著影响。对于相同数量的不同有机物质, 除 Fe(II)、Fea 外的其他形态铁含量间无显著性差异。 土壤中 Feo、Fep、Fe(II)、Fea 等铁形态含量均随有机 物质数量的增加而增加。由此可知,有机物质数量的 多少是引起各形态铁之间相互转化的重要因素。

研究表明,老化的氧化铁比表面和可释放的羟基 (或水合基)数量的增加是其活化的条件^[33],而有机物 质是吸附性离子的载体,可有效降低晶核的形成,从 而增加土壤Feo的吸附量,同时其作为络合剂,也促 进了Fep的生成^[34]。因此当土壤中Fed含量相近时, Feo、Fep含量与有机质含量呈极显著正相关关系^[35-36]。 当土壤中存在含量较高的有机质时,可为微生物的生 长提供充足的营养,包括碳源及氮源,从而对铁的异 化还原起到明显的促进作用^[30,37]。有机物质对铁离子 具有较强的络合和吸附能力,因此与 Fea 含量之间也 呈极显著正相关关系^[31]。由此,有机物质能够有效 调节硝田土壤中各形态铁的分布,进而增强铁的有效 性;张又驰等^[38]"有机物质厌氧培养初期铁有效性 显著增加"的研究结果也证明了这点。

2.3 落干/淹水状态及有机物质对模拟硝田土壤 硫转化特征的影响

2.3.1 落干/淹水状态 图 4 表明,土壤各形态硫 之间的含量也存在较大的差异:St>Sav SO₄²>Sab。 土壤 St、Sab 以及 SO₄²含量,DC 与 CK1 处理相比无 显著差异,而 SC 处理均显著下降;但土壤 Sav 含量 在 SC 与 DC 处理间没有显著变化。SC 与 CK1 处理 相比,土壤 St、Sab、SO₄²含量分别从 19.90、0.56、 5.66 g/kg 下降到 15.10、0.30、4.55 g/kg,降幅分别 为 24%、47%、20%。由此可见,落干/淹水状况对硝

(图中不同小写字母表示同种有机物质的不同数量间差异在 P<0.05 水平显著,不同大写字母表示同一数量的不同有机物质种类间差异在 P<0.05 水平显著;下同)

图 3 有机物质种类与数量对模拟硝田土壤铁转化特征的影响

Fig. 3 Effect of different kinds and quantities of organic substances on Fe transformation Fe in the simulated mirabilite soil

田土壤中硫形态转化有重要的影响。淹水后各形态硫 下降的原因可能是:在淹水还原条件下,SRB 活性 增强^[22],将高价态硫还原成低价态后,与土壤中的 金属阳离子结合形成了硫化物,如FeS、MnS等。此 外,土壤中硫矿化作用最适宜的含水量为最大田间持 水量的 60%^[39],本试验中土壤 SO₄²⁻和 Sav 在 DC 处 理时含量最大可以说明这点。

2.3.2 有机物质种类与数量 图 5 表明,加入不同 数量的水稻秸秆后,除 SO²⁻外,土壤 St、Sab、Sav 含量均无显著性差异。而加入不同数量的玉米秸秆 后,除 Sab 外的其他硫形态含量各处理间均存在显著 差异,土壤 St 含量呈现先降后升的趋势,土壤 Sav、 SO²⁻含量则呈现先升后降的趋势,其中土壤 St 含量 增加的原因可能是玉米秸秆中含硫量较高^[40]。研究 发现在加有机物质淹水还原条件下,最初Fe()的形 成速度追随不上有机还原性物质的形成速度,形成的 少量 Fe()大部分与有机螯合剂结合,因此能与硫结 合的 Fe()减少,随着有机物质的增多,土壤中的 Fe()也不断增加,可以与硫大量结合,使得土壤 Sav、SO²⁻等形态的硫含量降低^[41]。此外,有机物质 的种类对各形态硫的影响存在差异,除T2、T3处理 后的土壤 Sav 外,其他硫形态的含量均为玉米秸秆处 理大于水稻秸秆,这可能是由于玉米秸秆的平均含硫 量高于水稻秸秆^[40]。张巧萍等^[42]研究表明土壤有效 硫与有机质之间存在较低的负相关性;而韩文炎等^[43] 却提到土壤 Sav 与有机质含量的关系不确定,其原因 可能是土壤中 Sav 含量的高低受到众多因素影响。由 于硫的形态转化同时受化学和生物氧化还原过程的 影响,硫被还原后形成的离子又同时与氢离子和某些 金属离子反应^[41],各形态硫之间的转化还需要进一 步研究,如采用先进原位分析技术、同位素示踪法以 及高分辨率的显微技术等^[22]。

 2.4 落干/淹水状态及有机物质对模拟硝田土壤 氧化还原状况的影响

图 6 表明,淹水处理可有效降低土壤 Eh, 2.4.1 Eh 而加入秸秆后 Eh 的变化更为明显。随着秸秆数量增加, Eh 急剧降低。当分别加入 20 g/kg 水稻秸秆、玉米秸秆 时, Eh 分别降低至 316、 502 mV 左右, 相较于 CK1, 降幅分别为 42%、8%; 当分别加入 40 g/kg 水稻秸秆、 玉米秸秆时, Eh 分别降低至 74、330 mV 左右, 相较 于 CK1,降幅分别为 85%、40%。可见,相同数量的 不同种类有机物质对 Eh 的影响存在显著差异,这可能 是由于水稻秸秆中蛋白质等分解速度快的有机组分含 量较玉米秸秆大,而木质素等分解速度慢的有机组分含 量小^[40];水稻秸秆分解速度较快,耗氧较大,故添加 水稻秸秆后的土壤 Eh 下降更为显著。因此,两种方式 均能有效地调节土壤的氧化还原状况 特别是加入有机 物质淹水密封处理后,土壤 Eh 能够显著降低,这与其 处于淹水厌氧状态、有机物质含量增加及有机还原性物 质不断产生等因素密切相关[33-44]。

2.4.2 TARM 土壤氧化还原过程中既相联系又 相区别的两方面包括氧化还原的强度因素(即 Eh)和 数量因素(即 TARM)。在土壤氧化还原状况中,数量 因素往往起着重要的作用^[26]。从图 7 中可以看出, 土壤 TARM 整体呈现上升趋势,可能是由于秸秆本 身含有大量的未分解物质,同时此现象与上述土壤 Eh 整体呈现下降趋势大致吻合。

图 5 有机物质种类与数量对模拟硝田土壤硫转化特征的影响

Fig. 5 Effects of different kinds and quantities of organic substances on S transformation in simulated mirabilite soil

图 7 不同处理对模拟硝田土壤还原性物质总量的影响 Fig. 7 Effect of different treatments on TARM in the simulate mirabilite soil

表1 落干/淹水状况下土壤铁硫转化与氧化还原状况的相关关系(*n=9*) Table 1 Correlation coefficients between Fe and S transformation in soil with redox regime in drying/submergence

	Fet	Fed	Feo	Fep	Fe(II)	Fea	St	Sab	SO_4^{2-}	Sav
Eh	-0.065	-0.336	-0.360	-0.540	-0.480	-0.480	0.347	0.499	0.219	-0.182
TARM	0.056	0.288	0.795^{*}	0.874^{**}	0.928^{**}	0.890**	-0.739^{*}	-0.790^{**}	-0.620	-0.098

注:*表示在 P<0.05 水平显著相关;**表示在 P<0.01 水平极显著相关;下同。

2.5 落干/淹水状态及不同有机物质状况下铁硫 转化与土壤氧化还原状况的关系

2.5.1 落干/淹水状态 相关分析结果(表 1)表明, 各形态铁和硫均与 Eh 无显著相关关系,说明在本试 验条件下,氧化还原状况的强度指标对铁、硫的形态 转化无显著影响。除 Fet 和 Fed 外, Feo、Fep、Fe() 和 Fea 含量与 TARM 含量均存在显著或极显著正相 关关系;除 SO²₄和 Sav 外, St、Sab 与 TARM 含量存 在显著或极显著负相关关系,说明氧化还原状况的数 量指标与铁、硫形态转化的关系更密切。

2.5.2 有机物质种类与数量 相关分析结果(表 2) 表明,除 Fet 和 Fed 含量与氧化还原指标相关关系不显著外, Feo、Fep、Fe()和 Fea 含量与氧化还原指标存在显著或极显著相关关系,表明 Fe()等无机

还原性物质的产生和土壤中有机还原性物质的生成 及其进一步反应关系密切^[41],在有机物质的作用下, 氧化还原状态对各形态铁间的转化产生了重要影响。 SO²⁻含量与 Eh 存在极显著正相关,与 TARM 存在显 著负相关,而 St、Sab 和 Sav 含量与两个氧化还原指 标的相关关系均不显著,说明 SO²⁻ 是影响氧化还原 状况的主要硫形态。

2.6 不同种类与数量有机物质状况下各形态铁与 硫的相关关系

从铁与硫的相关分析结果(表 3)可见, St 和 Sab 含量与铁形态的转化无显著相关关系; SO_4^2 与 Feo 含 量存在极显著负相关关系, 与 Fep、Fe()、Fea 含 量存在显著负相关关系, 与 Fet、Fed 含量无显著相 关性; Sav 与 Feo、Fe()含量存在显著负相关关系,

表 2	个同种类与数	又量的]有机物] 质 状	况上	۱±	壤铁	硫转	化与	i氧化i	企原制	犬况柞	关关糸()	n=21)	
												11.00			

Table 2 Correlation coefficients between Fe and S transformation in soil with redox regime under different kinds and quantities of organic substances

	Fet	Fed	Feo	Fep	Fe(II)	Fea	St	Sab	SO_4^2	Sav
Eh	-0.162	0.102	-0.75**	-0.460^{*}	-0.84**	-0.72**	0.284	-0.029	0.694**	0.272
TARM	0.020	-0.174	0.557**	0.516^{*}	0.518^{*}	0.506^{*}	0.171	0.196	-0.458^{*}	-0.346

第2期

表 3 不同种类与数量的有机物质状况下铁与硫形态含量的相关关系(*n*=30) Table 3 Correlation coefficients between contents of different forms of Fe and S under different kinds and quantities of organic substances

					1	e
	Fet	Fed	Feo	Fep	Fe(II)	Fea
St	-0.278	-0.175	0.066	0.314	0.084	0.054
Sab	-0.337	-0.289	0.172	0.298	0.212	0.209
$\mathrm{SO_4}^{2-}$	-0.099	0.222	-0.585**	-0.483*	-0.506^{*}	-0.485^{*}
Sav	0.129	0.143	-0.421^{*}	-0.365	-0.454^{*}	-0.274

与 Fet、Fed、Fep、Fea 含量无显著相关关系。 SO_4^{-1} 与 Fe()含量呈显著负相关关系可能是因为:在还原 条件下,Fe(II)率先形成,进而加速 SO_4^{-1} 的还原^[25]; 反过来, SO_4^{-1} 还原产物又促进 Fe()的还原^[25]; Sav 与 Fe()含量存在显著负相关关系可能是因为:Sav 主要以 SO_4^{-1} 形态存在,而在还原条件下,它被还原, 进而与先形成的 Fe()合成了 FeS 沉淀,从而使 Sav 含量下降。由此可见,硝田土壤中铁与硫形态间的转 化存在一定的耦合关系。

3 结论

淹水状态及有机物质的数量对 Feo、Fep、Fe(II) 以 及 Fea 含量的变化存在显著影响,铁的异化还原现象明 显,铁素的有效性得到显著增强;相同数量的不同有机 物质,除对 Fe()、Fea 外,对其他各形态铁无显著影 响; Fet 和 Fed 含量受室内培养条件的影响不大。淹水 状态下 SRB 活性增强,从而使硫的转化比落干显著增 强;有机物质对硫形态转化的影响与加入有机物质的种 类和数量等因素密切相关。落干/淹水状况和有机物质 均能有效地调节土壤的氧化还原状况 特别是加入有机 物质淹水处理能够显著地改变土壤 Eh,同时由于不同 种类的有机物质中含有的有机组分不同,其对 Eh 的影 响也存在差异;另外,在淹水条件下,尽管铁和硫形态 间的转化与 Eh 无显著关系,而只与 TARM 关系密切, 但在加入有机物质之后,铁和硫形态间的转化与 Eh 及 TARM 相关关系显著,由此表明由淹水和有机物质引 起的土壤氧化还原状况的改变对土壤铁、硫形态间的转 化有重要影响。此外,硝田土壤中铁与硫的形态转化之 间也表现出一定的耦合关系。

参考文献:

- [1] 曾云, 贺金良, 王秀京, 等. 四川省成矿区带划分及区 域成矿规律[M]. 北京: 科学出版社, 2015: 97–107
- [2] 魏东岩. 论中国钙芒硝矿床[J]. 化工矿产地质, 2001, 23(2): 75-82
- [3] 红层地下水科研组.四川盆地某些红色泥岩含水层及其 农灌意义[J].成都地质学院学报,1977,4(1):6-12
- [4] 何毓蓉,杨昭琮,陈学华,等.四川盆地西部灌口组(K₂g)紫
 色雏形土的特征与分类[J].山地学报,1999,17(1):28–33

- [5] 苟宗海. 四川天全、芦山、宝兴地区名山组地层特征[J]. 四川地质学报, 1992, 12(3): 201-208
- [6] 王寿廷, 江俊德. 四川省眉彭地区硝水田的成因和改良[J]. 土壤通报, 1960, 4(3): 22–25
- [7] 王昆.四川眉山芒硝矿主要环境地质问题与防治对策[J].四川地质学报, 2008, 28(3): 225–229
- [8] 四川省农牧厅,四川省土壤普查办公室.四川土壤[M].成都:四川科学技术出版社,1995:635-636
- [9] 申红芸,熊宏春,郭笑彤,等.植物吸收和转运铁的分子生理机制研究进展[J].植物营养与肥料学报,2011, 17(6):1522–1530
- [10] Lovley D R, Holmes D E, Nevin K P. DissimilatoryFe(III) and Mn(IV) reduction[J]. Advances in Microbal Physiology, 2004, 49(3): 219–286
- [11] 李新华,刘景双,于君宝,等.土壤硫的氧化还原及其 环境生态效应[J].土壤通报,2006,37(1):159–163
- [12] Scott G J, Bree M, Edward D B. Legacy impacts of acid sulfate soil runoff on mangrove sediments: Reactive iron accumulation, altered sulfur cycling and trace metal enrichment[J]. Chemical Geology, 2016, 42(7): 43–53
- [13] 朱玉祥,马良,朱黎明,等.氧化还原条件下有机物料 对酸性土壤 pH、铁形态和铜吸附解吸的影响[J].中国土 壤与肥料,2011(5):65-68
- [14] 傅友强,梁建平,于智卫,等.不同铁形态对水稻根表铁 膜及铁吸收的影响[J]. 植物营养与肥料学报,2011,15(5): 1050-1057
- [15] 张磊,曲东,易维洁,等.纤维素作为电子供体对异化 铁还原过程的影响[J].西北农林科技大学学报(自然科 学版),2009,37(4):121–127
- [16] 柳勇,于雄胜,李芳柏,等.紫云英水溶性有机物促进 淹水土壤中五氯酚还原与铁还原[J].农业环境科学学报, 2014,33(4):687-694
- [17] 郝庆菊, 王起超, 王跃思. 三江平原典型湿地土壤中硫 的分布特征[J]. 土壤通报, 2004, 35(3): 331–335
- [18] 吴又先, 潘淑贞, 丁昌璞. 土壤中硫的氧化还原及其生态学意义[J]. 土壤学进展, 1993, 21(4): 9–17
- [19] 孙丽娟,段德超,彭程,等.硫对土壤重金属形态转化 及植物有效性的影响研究进展[J].应用生态学报,2014, 25(7):2141-2148
- [20] 曲东, 尉庆丰. 陕西几种代表性土壤硫形态与土壤性质 的关系[J]. 土壤通报, 1996, 27(1): 16–18
- [21] 谢良商. 标记硫酸铵和元素硫在稻田土壤中的转化[J]. 中国农业科学, 1995, 28(6): 58-67
- [22] 刘志光,徐仁扣. 几种有机化合物对土壤中铁与锰的氧 化物还原和溶解作用[J]. 环境化学, 1991, 10(5): 43–50

- [23] Gonzalez-Silva B M, Briones-Gallardo R, Razo-Flores E, et al. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge[J]. Journal of Hazardous Materials, 2009, 172(1): 400–407
- [24] 王静,曲东,易维洁.不同浓度硫酸盐对水稻土中异化
 铁还原过程的影响[J].农业环境科学学报,2009,28(5): 908-913
- [25] 王旭刚, 徐晓峰, 孙丽蓉, 等. 厌氧条件下水稻土中铁 硫循环与光照的关系[J]. 土壤学报, 2013, 50(4): 712–719
- [26] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2008: 64-226
- [27] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012: 156–176
- [28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科 技出版社, 1999: 74-225
- [29] 单孝全, 陈斌, 铁军, 等. 土壤和河流沉积物中硫的形态分析[J]. 环境科学学报, 1991, 11(2): 172–177
- [30] 王图锦,吉芳英,何强,等.三峡库区土壤铁异化还原 及其对铁形态影响[J].重庆大学学报,2011,34(1): 100-104
- [31] 徐小逊,张世熔,余妮娜,等. 沱江中游土壤有效铁空间分布及其影响因素分析[J]. 西南农业学报,2012,25(3): 977-981
- [32] 于晓莉,傅友强,甘海华,等.干湿交替对作物根际特 征及铁膜形成的影响研究进展[J].土壤,2016,48(2): 225-234

- [33] 于天仁, 王振权. 土壤分析化学[M]. 北京: 科学出版社, 1988: 344
- [34] 苟文平, 刘世全, 张世熔, 等. 西藏土壤有效铁含量及 其影响因素[J]. 山地学报,2007, 25(3): 359-363
- [35] 陈家坊,何群,许祖贻.水稻土发僵原因的初步分析[J]. 土壤通报,1984,15(2):53-56
- [36] 何群, 陈家坊. 土壤中游离铁和络合态铁的测定[J]. 土 壤, 1983, 15(6): 242-244
- [37] 赵鹏, 王硕, 叶素银, 等. 梨园秸秆还田腐解特征及对 土壤性状的影响研究[J]. 土壤, 2016, 48(2): 270–277
- [38] 张又弛, 唐晓达, 罗文邃. 淹水还原条件下红壤中葡萄
 糖及腐殖酸对铁锰形态的影响[J]. 土壤学报, 2014, 51(2):
 270-277
- [39] McLachlan K D. Sulphur in Australasian agriculture[M]. Sydney: Sydney University Press, 1975: 31–37
- [40] 胡霭堂. 植物营养学[M]. 北京: 北京农业大学出版社, 1995:162
- [41] 于天仁. 水稻土的物理化学[M]. 北京: 科学出版社, 1983: 51-243
- [42] 张巧萍,张玉亭,聂胜委,等.信阳毛尖茶园土壤有机 质和硫、镁含量研究[J].土壤通报,2015,46(1): 153-156
- [43] 韩文炎,石元值,马立峰,等.茶园土壤硫素状况及对 硫的吸附特性[J].茶叶科学,2003,23(S1):27-33
- [44] 朱同彬, 孙盼盼, 党琦, 等. 淹水添加有机物料改良退 化设施蔬菜地土壤[J]. 土壤学报, 2014, 51(2): 335-341

Fe and S Transformation Characteristics and Their Influential Factors in Simulated Mirabilite Soil

YANG Xun¹, LI Yan², YUAN Dagang^{1*}, LI Xiaoying¹, CHEN Na¹, WANG Yiyan¹, CHEN Guanhua¹

(1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China; 2 Forestry Bureau of Yucheng District, Ya'an, Sichuan 625000, China)

Abstract: In an indoor incubation experiment, Na_2SO_4 contents of simulated mirabilite soil were determined, and then the effects of drying-submergence and different kinds and quantities of organic substances on Fe and S transformation in the soil were observed and discussed. The results showed that drying/submergence and organic substances had no significant effect on Fet and Fed. However, submergence and the quantities of organic substances had significant effects on Feo, Fep, Fe() and Fea. Moreover, Fe() and Fea were significantly affected by organic substances as well. Submergence and organic substance both could promote S transformation in the soil. Fe and S transformation was realized by direct reaction of organic substance, on the other hand, by changing the conditions of soil redox regime including Eh and TARM. Besides, there was a coupling relationship between the transformation of different forms of Fe and S in the soil.

Key words: Simulated mirabilite soil; Fe; S; Drying/Submergence; Organic substance