DOI: 10.13758/j.cnki.tr.2019.05.013

降雨和施肥对上海崇明岛小麦田 N₂O 排放的影响^① ——基于涡度协方差法的研究

张梦珊¹,郭海强¹,马 俊¹,李 红¹,戴圣骐¹,顾凯华^{2*},高 伟³,赵 斌¹ (1 复旦大学生物多样性与生态工程教育部重点实验室,上海崇明东滩湿地生态系统国家定位观测研究站,崇明生态研究院,复旦大学,上 海 200438;2 上海市崇明区气象局,上海 202150;3 长三角环境气象预报预警中心,上海 200030)

摘 要:在基于涡度协方差技术的小麦田 N₂O 通量观测基础上,分析了小麦田 N₂O 的排放动态以及不同时间尺 度上降雨和施肥对小麦田 N₂O 排放的影响,同时以增强回归树的方法定量分析了降雨和施肥相关因子对小麦田 N₂O 通量的 贡献率。结果表明:小麦田 N₂O 通量没有明显的昼夜和季节变化模式,研究期内 N₂O 平均日排放量为 666.5 $\mu g/(m^2 \cdot d) \pm 669.4 \ \mu g/(m^2 \cdot d)(以 N_2 O - N 量计); N_2 O 主要以脉冲的形式释放,其中降雨和施肥引发的脉冲占小麦田 N_2 O 总排放量的 比例分别为 29.4%、19.2%;降雨促进小麦田 N_2 O 排放,且 N_2 O 通量对降雨事件的响应比较迅速(主要集中在雨后的几 小时内),同时降雨的影响能持续 1~2d;相比降雨,施肥对小麦田 N_2 O 排放的促进作用存在一周左右的时滞;综合 考虑施肥和降雨的交互影响,在施肥后 1~8 d 内发生的降水事件对 N_2 O 的排放有明显的促进作用。因此,二者的交 互影响不容忽视。$

关键词:N₂O 通量;降雨;施肥;涡度协方差 中图分类号:Q14 文献标识码:A

氧化亚氮(N₂O)是重要的温室气体之一,也是破 坏臭氧层的主要物质之一。据估计,自工业化以来, 人为活动已经导致大气 N₂O 浓度增加了 20%^[1]。从 全球来看,土壤是 N₂O 排放的最大来源(估计为 6.8 Tg/a,以 N₂O-N 量计,下同),占排放到大气中的 N₂O 总量的 65% 左右,其中 4.2 Tg/a 直接或间接来自于 氮肥, 2.1 Tg/a 来自于粪肥以及 0.5 Tg/a 来自于生物 质的燃烧。因此,农田土壤被认为是大气 N₂O 的最 大人为排放源^[2]。针对农田 N₂O 排放量,已有研究显示 出巨大的差异,从0.7 mg/(m²·d)到51.8 mg/(m²·d)^[3-6]; 并且,不同农田类型之间也存在较大差异,其中菜田 N₂O 排放量远高于邻近的水稻、小麦、玉米等大田作 物^[7-10]。同时,较多研究发现,农田 N₂O 排放不存在 明显的季节变化模式,多以脉冲的形式释放^[10-12]。 Parkin 和 Kaspar^[13]在两年玉米田 N₂O 排放的研究中 发现,脉冲事件占累计年排放量的比例高达49%。

微生物的硝化和反硝化作用是调节和控制土壤 N₂O 排放的关键过程 ,而这一过程会受到自然环境条 件和农业管理措施直接或间接的影响。许多文献[14-16] 综述了影响 N₂O 排放的因素,普遍认为农田 N₂O 排 放主要与农业管理措施(氮肥施用量、水分管理、作 物种类、肥料种类)和土壤条件(有机碳含量、pH、质 地)等有关,其中氮肥施用是导致 N₂O 排放差异的主 要因素。Hoben 等^[17]发现,玉米-大豆轮作系统施氮 量的 N₂O 响应呈非线性指数增长。而在全球范围内, Stehfest 和 Bouwman^[16]发现 N₂O 排放量和氮肥施用 量之间存在线性关系。研究表明,氮素的转化率直接 影响硝化反硝化作用或两个过程的耦合^[18],从而影 响 N₂O 的排放。除了肥料施用,灌溉或降雨对农田 N₂O 排放也会产生重要影响^[12, 19]。这可能是由于水 分增加后,氮肥的水解速率以及硝化速率较快,同时 高土壤孔隙水(WFPS)加速了反硝化过程^[20]。许多研 究都观测到,干旱土壤润湿后产生的代谢活动会刺激 N₂O 排放,降雨会导致 N₂O 脉冲峰出现^[21-23]。因此 降雨对农田(尤其对于降水为主要水分输入来源的农 田系统)N₂O 排放的影响不容忽视。

基金项目:上海市科委科研项目(16ZR1431700)、国家自然科学基金项目(91637101)、中国气象局大气探测重点开放实验室开放课题 (KLAS201406)和上海市科委崇明专项(15dz1208105)资助。

^{*} 通讯作者(309177874@qq.com)

作者简介:张梦珊(1993—),女,江苏徐州人,硕士研究生,主要研究方向为全球变化生态学。E-mail:mszhang0120@163.com

由于农田 N₂O 排放多以脉冲形式释放,因此需 要使用连续的、长期的、高频率和高精度的通量监测 方法来捕捉短时间的偶发 N₂O 脉冲峰^[24]。然而目前 许多研究基于静态箱-气相色谱法(简称"箱式法") 开展,这种方法需要较高的人工投入,并且观测频率 较低可能导致季节或年总排放量估算存在偏差^[25]; 同时由于农业土壤的空间变异性大,使用箱式法观测 可能造成通量的低估或高估,例如有研究发现,在中 国山西棉花田,箱式法比涡度法低估了17%~20% 的 N₂O 排放^[25]。涡度协方差技术是基于微气象学的 测量温室气体通量的技术,可以在不干扰环境条件的 情况下观测生态系统尺度上的平均通量^[26-28]。近年来 随着快速响应探测器如可调谐二极管激光器(TDL) 和量子级联激光器(QCL)等的发展,基于涡度协方差 法的 N₂O 通量观测逐渐得到开展^[15],相关研究在国 际上日益增加,但目前还未见国内文献报道。

到目前为止,大多数关于 N₂O 排放的研究主要 关注单一因素的影响,特别是施肥的影响^[29-33],在很 大程度上忽视了其他农业措施包括水分管理等的综 合效应。然而,在实践中农民更倾向于采取综合管理 的措施来提高生产力,因此更详细的综合研究是十分 必要的。小麦是世界主要粮食作物之一,在我国的 种植面积和产量仅次于水稻。虽然目前有研究报道 了施肥和降雨(或灌溉)配合发生会强烈促进 N₂O 排 放^[28, 34],但对于降雨和施肥事件的发生顺序可能带 来的不同交互影响以及如何量化"水肥"组合对小麦 田 N₂O 排放的贡献却未见文献探讨。在基于涡度协 方差技术的小麦田 N₂O 通量观测基础上,本文探讨 了小麦田生长季内 N₂O 的排放动态,研究了不同时 间尺度上小麦田 N₂O 排放对降雨和施肥的响应,同 时定量分析了降雨和施肥相关因子对小麦田 N₂O 排 放的贡献率,探讨了 N₂O 通量对于降雨和施肥事件 发生的先后顺序("水肥"组合)是否有不同的响应, 从而为实施低碳农业提供一些科学指导。

1 研究区概况与研究方法

1.1 研究区概况

研究区位于上海崇明岛,崇明岛地处长江口,属 于典型的北亚热带季风气候区。降雨充沛,四季分明, 年平均气温 15.8℃,年日照时数 1 973.9 h,年平均降 雨量 1 128.9 mm,主要集中在 4—9 月。原位观测实 验站位于崇明岛中部(121°29'38" E,31°39'59" N), 耕层土壤为粉壤土,偏碱性。研究区多年稻麦两熟轮 作,每年 5—10 月种植水稻,而从每年 10 月至次年 5 月种植小麦。

在崇明岛,小麦主要采用撒播方式种植。本研究 供试小麦为扬麦11号,于2014年10月22日播种, 次年5月20日收获,成熟小麦平均株高约1 m。由 于崇明岛雨水充足,因此小麦生长季内无灌溉管理。 该观测塔周边农田由当地农场实行统一管理,其中, 在2014年10月20日施加复合肥(N,27 kg/hm²)做基 肥。不同生长阶段肥料施加信息见表1。

		normation of fertilizer app	oncation	
日期	生育期	施肥方法	施肥种类	施氮量(N,kg/hm ²)
2014-10-20	种植前耕作	翻入土壤	复混肥料	27
2014-10-25	出苗期	表施	复混肥料	18
2014-11-26	出苗期	表施	尿素	52
2014-12-13	出苗期	表施	复混肥料	23
2015-01-18	分蘖/越冬期	表施	尿素	52
2015-02-19	幼苗期	表施	复混肥料	23
2015-03-15	拔节期	表施	尿素	42
2015-03-29	孕穗期	表施	尿素	42

表1 肥料施加信息表

1.2 N₂O 通量数据的获取和处理

本研究采用涡度协方差方法(eddy covariance method)进行观测。该通量塔位于崇明岛中部,考虑 到周边农田较为均一,且存在防护林(防护林高度在 12 m 左右),将通量观测高度设置在 20 m。该通量观 测点配置了 CR3000 数据采集器(美国 Campbell 公

司),以三维超声风速仪(CSAT3,美国 Campbell 公司) 观测三维风速,以快速响应 N_2O 气体分析仪 (913-0014,美国 Los Gatos Research 公司)观测 N_2O 浓度。 N_2O 气体分析仪被安置在一个环境稳定的工作 室,距离三维超声风速仪大约 20 m。参考 Eugster 等^[35]的实验,该观测系统使用长 21.6 m,内径为 10 mm 的聚四氟乙烯管,连接气体分析仪和位于试验地中央 的三维风速仪。空气通过真空泵进入气体分析仪,首 先经过干燥剂过滤多余的水蒸气。样气的管道流速为 21 L/min。该分析仪可以提供 N₂O 气体含量的 10 Hz 连续数据,并实时进行水汽校正^[36]。Campbell 公司 的 CR3000 数据采集器用于记录所有 10 Hz 数据。观 测阶段为 2014 年 10 月至 2015 年 5 月,包含整个小 麦生长季。环境因子观测包括降雨、空气温度、土壤 温度等。

本研究采用 Eddy Pro 软件(version 6.1.0)进行通 量计算和数据质量控制。主要过程包括:去除了超出 仪器测量范围和超过 4 倍标准差的异常值^[37];运用 坐标轴二次旋转法使垂直风速均值为零^[38];超声虚 温校准(SND correction)^[39];频率损失校准;WPL 校 准^[40]等。本研究所使用的闭路涡度协方差系统,抽 气系统中安装质量流量控制器,延迟时间由 N₂O 浓 度和垂直风速的最大协方差出现的时间来决定^[28]。 参考 Foken 等^[41]的方法进行稳态测试(stationarity test),采用"0-1-2"系统对通量数据进行质量标签, 其中"2"表示由于质量差而应从所得数据集中丢 弃的通量。主要通过以下方式对 N₂O 通量数据进行 数据质量控制: 异常数据的剔除。删除仪器处于非 正常工作状态的瞬时值,如气压不稳定、以及根据诊 断文件剔除闭路系统进行标定时的观测数据等; 删 除稳态测试质量标签为 2 的数据^[41]; 去除夜间摩 擦风速<0.2 m/s 时的数据^[28]。最终 2014 年 10 月 21 日至 2015 年 5 月 20 日的数据保存率为 51.2%。参考 Molodovskaya 等^[24]的方法,本研究将质量控制后日 保存率 25%(12 个半小时数据点)的半小时数据 的平均值作为 N_2O 日平均通量($\mu g/(m^2 \cdot h)$), 而 N_2O 日排放量(µg/(m²·d))为日平均通量乘以 24。月尺度的 N₂O 通量通过积分计算,其中 2014 年 10 月因为监测 日期较少,因此未列入月尺度的分析。

1.3 统计分析

本文采用 SPSS 22.0 和 R 软件对数据进行处理和 分析。为探究降雨对 N₂O 通量的影响,采用线性回 归方法分析月尺度以及小时尺度上土壤 N₂O 通量与 降雨量的相关性;以单因素方差分析检验施肥前后日 平均通量的差异以及降雨前、雨中、雨后日通量变化 的差异;以增强回归树模型(boosted regression trees, BRT)分析施肥和降雨的交互影响。

增强回归树(BRT)是一种用于非线性关系分析 的机器学习方法,它结合了 Regression trees 和 Boosting 两种算法的优势。在该回归模型中,响应变 量为土壤 N₂O 排放量,解释变量包括降雨量、距上 次降雨日差、施肥量、距上次施肥日差以及降雨施肥 的日差。BRT 可以计算在其他自变量取均值或不变 的情况下,某一自变量与因变量的相互关系,从而得 出自变量对因变量的影响大小以及各个解释因子的 相对重要性排序。BRT 提高了计算结果的稳定性和 精度,同时可以适用于不同的数据格式。本研究使用 R软件来运行 BRT("gbm"软件包),模型的参数设 置参考 Ma 等^[42]。

为判断土壤 N₂O 的脉冲峰并计算其对日排放的 贡献,本文采用箱线图分析小时通量并设置脉冲峰的 阈值。箱线图的优点在于它将统计数据的大小与中值 而不是平均值相联系。因此即使当通量数据不呈正态 分布时也可以使用^[43]。箱线图最重要的是对相关统 计点的计算,例如下四分位数 Q1、上四分位数 Q3 以及中位数 Q2。上边缘(UF,upper fence)和下边缘 (LF,lower fence)通常设置在四分位距(IQR,IQR= Q3-Q1)的固定距离处(*n* 倍),计算公式为:

UF=Q3+n(Q3-Q1)(1) LF=Q1-n(Q3-Q1)(2)

参照 Molodovskaya 等^[24],本研究对脉冲峰的 定义: (n=0.5)UF 作为小麦田 N₂O 脉冲检测的最低 边界,阈值以上的所有 N₂O 通量定义为脉冲峰。 本文对降雨前、降雨中及降雨后的日平均通量的定 义为:在日尺度上,若某一日发生降雨,且前后两 天无降雨,则这3d的通量分别代表降雨前、降雨 中、降雨后的通量;若连续数日发生降雨,取平均 值代表降雨中的日平均通量,则降雨前后取相同天 数日通量的平均值分别为降雨前及降雨后的平均 日通量,最后计算所有降雨前、雨中以及雨后的日 通量的平均值,即分别为相应的 N₂O 平均日排放 量。根据小时降雨数据,本文对"降雨中24h"通 量的定义:与降雨前、降雨中及降雨后的定义相对 应, 若降雨集中在一天, 则当日的 N₂O 通量即为 降雨中 24 h 的排放量;若连续若干天都有降雨, 则将其对应时刻的通量取平均值即为降雨中的 24 h 的通量变化情况,同时相应的以相同天数求得降 雨前和降雨后的 24 h 通量。

2 结果与分析

2.1 小麦田 N₂O 排放动态及环境因子变化

本研究的观测期为 2014 年 10 月至 2015 年 5 月, 包含了完整的小麦生长季。经过数据的质量控制,观 测阶段总共收集 5 208 个半小时数据,数据保存率为 51.2%。观测阶段共 212 d,其中数据保存率 25% 的 天数为 203 d,占全部观测时间的 95.8%。 在研究阶段内,土壤和空气温度都呈现先下降再 上升的趋势,在12月份土壤和空气平均温度均达到 最低,分别为4.8℃和4.2℃,在5月14日空气和土 壤温度达到最高,均为23.6℃,而1月初最低温度分 别为-0.1℃和1.6℃;同时12月份的降雨量最少,为 7.5 mm;降雨在3、4月份较为集中,分别达到103.5 mm 和98 mm(图1)。整个研究阶段内累计降雨475.2 mm。 根据小麦生育期特点,同时结合不同时期温度和降雨 的分布情况,将本研究划分为4个阶段(图1、表2)。 第1阶段主要对应小麦的出苗期,主要特点是降雨 量较少,但平均温度较高;第2阶段主要对应小麦 的幼苗、越冬期,该阶段温度低且降雨最少;第3 阶段包括小麦的返青、拔节期,这个阶段有最大的 施氮量和降雨量;第4阶段从2015年4月5日至5 月20日小麦收获,该阶段降雨量为146.9 mm,但 没有进行施肥。

(绿色箭头表示施氮,其长度代表施氮量;灰色线表示误差线,即每天收集数据的标准差(12个半小时数据点); 灰色虚线表示将研究期划分为4个阶段)

图 1 N₂O 日平均通量及环境因子(降雨量、空气温度、土壤温度、施氮量)的变化

Fig. 1 Daily average N₂O flux with precipitation, air temperature, soil temperature and N fertilizer

表 2 4 个观测阶段对应的小麦生育期及降雨量、施氮量和 N₂O 通量 Table 2 Corresponding wheat growth periods, precipitation, fertilization rates and N₂O fluxes during the four measurement phases

研究阶段	日期	生育期	降雨量(mm)	施氮量(N,kg/hm²)	N ₂ O平均日排放量(µg/(m ² ·d))
第1阶段	2014-10-21-2014-12-12	播种、出苗期	85.4	70	728.4 ± 642.8
第2阶段	2014-12-13-2015-02-08	幼苗、越冬期	44.0	75	375.3 ± 473.4
第3阶段	2015-02-09-2015-04-04	返青、拔节期	198.9	107	891.4 ± 665.5
第4阶段	2015-04-05-2015-05-20	孕穗、收获期	146.9	0	709.3 ± 792.3

具有不同降雨和施肥组合情况的 4 个阶段对应 的 N_2O 平均日排放量如表 2 所示。其中研究阶段内 N_2O 平均日排放量为 666.5 $\mu g/(m^2 \cdot d) \pm 669.4 \,\mu g/(m^2 \cdot d)$ 。 降雨量、施氮量最高的第 3 阶段, N_2O 平均日排放量 最高。第 2 阶段与第 1 阶段施氮量相当,平均日排放 量比第 1 阶段少 48.5%,这可能是由于基肥和不同降 雨量引起。第 4 阶段虽然没有施氮, N_2O 平均日排放 量比第 2 阶段高 89.0%,可能是受到降雨的刺激。整 个小麦生长季内,小麦田生态系统以 N_2O 形式的氮 损失量约为 1 355.8 g/hm²,其中脉冲占总排放量的比 例高达 38.5%。在观测阶段共记录了 26 次脉冲事件 (表 3),其中由"水肥"组合引发的脉冲次数占42.3%, 而由单独的降雨或施肥事件引发的脉冲分别为 9 次 和 3 次,排放量共占小麦田 N₂O 总排放量的18.2%, 与"水肥"组合触发的脉冲占比相当。因此,降雨事 件造成的脉冲对总排放量的贡献高达29.4%,而施肥 带来的贡献达19.2%。

从 4 个阶段 N₂O 的日变化来看(图 2),小麦田 N₂O 排放没有明显的昼夜变化模式。通常排放峰出现 在白天,除了图 2 中的第 3 阶段可能因为频繁降雨的 影响,其他 3 个阶段中均表现为白天的排放量高于夜 间。尽管季节尺度上,土壤温度与小麦田 N₂O 通量

脉冲次数 9 3 11 3 26 平均日排放量(µg/(m ² ·d)) 2131.1 ± 629.1 1808.0 ± 313.3 1864.3 ± 335.1 2282.5 ± 204.6 1998.4 ± 459.4 排放量占比(%) 14.2 4.0 15.2 5.1 38.5 	统计值	降雨	施肥	"水肥"组合	其他	所有脉冲
平均日排放置(µg/(n ² ·d)) 2 131.1 ± 629.1 1 808.0 ± 313.3 1 864.3 ± 335.1 2 282.5 ± 204.6 1 998.4 ± 459.4 排放置占比(%) 14.2 4.0 15.2 5.1 38.5	脉冲次数	9	3	11	3	26
排放量占比(%) 14.2 4.0 15.2 5.1 38.5 —N;O通量 → 土壤温度(%) —N;O通量 → 土壤温度(%) —N;O通量 → 土壤温度(%) —O;Oide → 土ţ(*) —O;Oide → ⊥↓ —	平均日排放量(µg/(m ² ·d))	2 131.1 ± 629.1	$1\ 808.0\pm 313.3$	$1\ 864.3\pm 335.1$	$2\ 282.5\pm 204.6$	$1\ 998.4 \pm 459.4$
$-N_{2}Oid \mathbb{E} \pm q a lig (\Omega)$	排放量占比(%)	14.2	4.0	15.2	5.1	38.5
$ \begin{array}{c} 120 \\ (1) $			- N ₂ O通量 土壤	温度 (℃)		
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	120 - (A) $(f+, m), f=0$ 0 $(f+, m), f=0$ 0 $(f+, m), f=0$			(B) (B) $R^2=0.76$ P=0.05 (D)		25 20 15 15 10 第 十 10 第 十 5 0 25 20 (3) 30 第 第 十 5 0 25 20 (3) 30 第 4 5 5 0 15 5 15 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15
时刻 时刻	$ \begin{bmatrix} 0 \\ -40$			$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ $		
		时刻	00.	₽	村刻	

表 3 生长季内降雨、施肥、"水肥"组合等引发的脉冲及其对 N₂O 总排放量的贡献

Table 3 Pulses caused by precipitation, fertilization and combination of 'Precipitation and Fertilizer' in the whole season and their percentages of total accumulated N₂O Emissions

的季节动态相关性不显著,但在图 2 第 1 阶段中土壤 温度与 N_2O 排放量的日变化(小时尺度)呈线性相关, 相关系数($R^2 = 0.76$, P < 0.05)。然而其他 3 个阶段中 并未观测到温度与 N_2O 通量的明显相关性,在降雨 量最多的第 3 阶段,夜间通量出现排放峰可能是受到 夜间降水的影响。

总的来说, N₂O 排放没有明显的昼夜和季节变 化,主要以脉冲的形式释放。相比于温度,降雨和施 肥是引发通量脉冲的主要因子。通常,在施肥后 N₂O 排放呈现先增加再减少的趋势,当施肥后发生降雨事 件,可能激发 N₂O 的脉冲峰。单独的降雨事件也会 引发脉冲。

2.2 降雨对 N₂O 通量的影响

由于在小麦生长季内无人工灌溉,降雨是小麦 田最主要的水分来源,其能改变土壤含水量和通气 状况,从而直接影响微生物生命活动的微环境。小 麦田 N₂O 月通量与月降雨量呈显著正相关关系 (*R*²=0.56, *P*<0.05)(图 3)。这可能是由于降雨量高导 致土壤含水量高,土壤内部通气性差,从而提供了 N₂O产生所需的厌氧条件。

Fig. 3 Relationship between monthly N_2O flux from wheat soils and precipitation

图 4 显示了降雨前、降雨中及降雨后的 N₂O 日 平均通量的变化。显然,土壤 N₂O 在降雨事件发生

 ⁽A、B、C、D 分别代表研究的第1~4 阶段)
 图 2 四个阶段 N₂O 日平均通量及土壤温度的变化
 Fig. 2 Diurnal variation of N₂O flux and the soil temperature for the four sub-periods defined in Table 2

的当天相比前一天排放量显著增加,降雨中的平均日 排放量为1049.3 μg/(m²·d),比降雨前增加了65.6%。 而降雨后一天的平均日通量为860.9 μg/(m²·d),相比 降雨前增加35.9%,相比降雨中日平均排放量减少 18.0%,但差异均不显著。

为了更好地探讨降雨量对小麦田 N₂O 通量的影

响,本文按照前文所分的4个阶段,分别将降雨前、 降雨中、降雨后的 24 h N₂O 通量变化显示在图 5 中。 可见,降雨前的小麦田 N₂O 通量在 4 个阶段中并没 有表现出明显的昼夜变化模式;除了第2阶段中降 雨当日通量没有明显的波动,其他3个阶段均有明 显的排放峰,其中第1、3、4阶段的脉冲分别占一 天释放量的 24.8%、28.9% 和 54.1%; 而受降雨的 影响,4个阶段中雨后一天的 N₂O 排放相比降雨前 一天显著增加(P<0.05), 然而雨后 24 h 中, 仅在第1 和第2阶段时出现通量脉冲峰,分别占一天释放量 的 30.5%和 48.8%。这可能是由于第 1 和第 2 阶段 时降雨量较少,土壤相对干燥,当发生降雨事件后 极大提高了底物可利用性从而促进微生物生命活动 产生代谢产物 N₂O。由此可见,降雨会促进土壤 N₂O 的脉冲峰,并且由于降雨对土壤湿度、通气性等性 质的改变,在雨后24h内降雨对土壤N₂O释放仍有 促进作用。

(A、B、C、D分别代表研究的第 1~4 阶段; P₀表示降雨当日 N₂O 通量与降雨量的关系; P₁表示降雨后一日 N₂O 通量与降雨量的关系)
 图 5 表 2 中定义的 4 个阶段降雨前后 N₂O 通量的日变化
 Fig. 5 Diurnal variation of N₂O flux for the four sub-periods defined in Table 2

不同阶段因为温度和降雨量不同,土壤 N₂O 通 量对降雨量有不同的响应。在第 1 和第 2 阶段中(图 5A 和图 5B),随着降雨量的增加降雨当日的土壤 N₂O 通量呈现递减趋势,相关关系分别可以表示为:Y=-37.46X+154.02($R^2=0.42$, P<0.001)、Y=-17.65X+43.77($R^2=0.37$, P<0.001)。而第 3、4 四阶段(图 5C 和图 5D), 土壤 N₂O 的排放随着降雨量的增加而增加,但趋势 并不显著。对于雨后 24 h 内的通量,4 个阶段均表现 出随降雨量的增加而增加的趋势。在第 1 和第 2 阶段 中,当降雨量<1.5 mm 和降雨量<1 mm 时,降雨量和 N₂O 通量呈现线性相关关系,决定系数分别为 0.40 (*P*<0.05)和 0.40(*P*<0.05)。在第 3 个阶段中,土壤 N₂O 通量与降雨量呈现线性相关,决定系数为 0.34 (*P*<0.05)。而在第 4 个阶段中,当降雨量<4 mm 时, 第5期

由表 4 施肥前后日平均通量的对比可以看出,施肥 后 1 ~ 4 d 中,小麦田 N₂O 日平均通量相比施肥前均有 增加但并不显著(P>0.05);而施肥后 5、6 d 相比施肥前 呈现显著差异,日平均排放量分别为 1 444.6 µg/(m²·d)± 749.2 µg/(m²·d)、1 413.8 µg/(m²·d)±711.7 µg/(m²·d), 相应地相比施肥前的日均排放量增加 35.2%(P<0.05) 和 41.3%(P<0.05)。

表 4	施肥前后 N_2O 日平均通量($\mu g/(m^2 \cdot d)$)
Table 4	Daily N ₂ O flux before and after fertilization

时间	N ₂ O ⊟ ³	P值	
(d)	施肥前	施肥后	(双尾)
1	$1\ 308.1\pm 843.4$	$1\ 343.2\pm 1\ 002.1$	0.89
2	$1\ 329.0\pm726.7$	$1\ 412.1\pm954.3$	0.77
3	$1\ 280.4\pm 547.6$	$1\ 362.8 \pm 896.1$	0.66
4	$1\ 151.8 \pm 490.0$	$1\ 464.7\pm 829.5$	0.09
5	$1\ 068.5\pm427.0$	$1\ 444.6\pm 749.2$	0.04
6	$1\ 000.6 \pm 406.0$	$1\ 413.8\pm711.7$	0.03

注:"时间"是指6次施肥事件取相应天数计算 N₂O 日平均 通量;"施肥前/后"是指6次施肥事件相应天数 N₂O 日均通量的 平均值;"P值"是指单因素方差分析检验6次施肥前后相应 N₂O 日平均通量的差异性。6次施肥事件指表1中除基肥和第8次施 肥以外的其他施肥事件。由于基肥前小麦尚未种植而第8次施肥 事件前后数据缺失量较大,因此这两次施肥事件未列入分析。 2.4 "水肥"的不同组合对 N₂O 通量的影响

本文采用了增强回归树(BRT)法分析施肥和降 雨的交互影响,发现5个降雨和施肥相关因子与N₂O 通量的关系以及各个解释变量的贡献率排序为(图 6A):距上次降雨日差>降雨施肥日差>距上次施氮日 差>降雨量>施氮量。由此可见,降雨和施肥事件对 土壤 N₂O 排放有不同程度的影响,同时降雨和施肥 的不同组合形式对小麦田 N₂O 通量的影响不容忽视。

从小麦的整个生长季来看,降雨和施肥事件对 N₂O 排放的影响都呈现随日差增大而减小直至平稳 的趋势(图 6B 和 6D),且这两个解释因子的贡献率达 51.2%。在降雨当日以及降雨后 3 d 内(图 6B),小麦 田 N₂O 日排放量维持在较高的水平,而雨后第 5 天 后释放量明显下降。相比降雨,在施肥后 6 d 时间内, N₂O 排放通量呈现增加的趋势(图 6D),这与前文 2.3 的结论一致,之后施肥事件对 N₂O 通量的影响随着 日差增大而减弱,N₂O 排放量降低趋于平稳。

降雨量也是影响小麦田 N₂O 排放的重要因子之 一,对通量排放的贡献率约为 21%。随着降雨量增加 (图 6E),N₂O 通量整体呈现波动式的上升,少量降雨 (<4 mm)就会刺激 N₂O 日排放量,这种增加趋势明显 高于日降雨量较高(>10 mm)的时期。而施氮量对 N₂O 排放的贡献率最小可能是由于本研究中仅有 3 个施 氮量水平所造成的数据的限制(图 6F)。

图 6 不同的解释因子(降雨量、距上次降雨日差、施肥量、距上次施肥日差、降雨施肥日差)与小麦田 N₂O 排放的关系及 其重要程度排序

Fig. 6 Relationship between different explanatory factors with N2O emission from wheat soils and the order of their importance

935

综合考虑降雨和施肥的交互影响,两个事件发生的先后顺序通过相差的天数来描述(图 6C),横坐标为负值表示降雨在前施肥在后,可能是受到降雨的刺激,这种情况下通量的变化呈现无规律波动;而当先施肥后降雨时(横坐标为正值),随着日差的增加,土壤 N₂O 通量呈现先增加后降低直至趋于平稳的波动趋势。即在日差 8 d 的阶段内,施肥以后降雨发生的越晚,小麦田 N₂O 释放量越大;在日差超过 8 d 后,随着施肥和降雨相差的时间越长,观测到的 N₂O 通量越低。降雨施肥日差这一因子的贡献率仅次于距上一次降雨的日差。

3 讨论

3.1 小麦田 N₂O 排放特征

本文研究了 2014—2015 年上海市崇明岛冬小麦 完整生长季 N₂O 排放情况,研究期内 N₂O 日平均通 量为 27.6 µg/(m²·h) ± 28.2 µg/(m²·h)。这低于 Cui 等[12]报道的位于中国山东的冬小麦实验田平均通量 (49 µg/(m²·h)), 而高于 Shi 等^[34]报道的小麦田的平均 通量(7.5 μg/(m²·h))。这可能是受到施肥种类以及施肥 量的影响。本研究小麦田的 N₂O 通量远低于邻近地 区的菜田^[10]以及玉米田^[28]。有研究显示 N₂O 的排放主 要取决于以下因子:降雨、施肥、耕作、作物种类以及 土壤因子,同时不同观测仪器也显示出明显差异^[26,28]。 大部分观测发现农田 N₂O 的排放没有明显的季节变 化^[24, 28, 44], 主要以脉冲的形式释放, 这与本研究结 果一致。本研究中降雨触发的脉冲占 N₂O 总排放量 的比例高达 29.4%,施肥的贡献达 19.2%,其中由"水 肥"组合带来的排放占比为15.2%,同时"水肥"组 合引发的脉冲次数占所有脉冲事件的 42.3%。有报道 称在荷兰泥炭地奶牛场连续3个月的测量中,降雨触 发的脉冲占总排放量的 40%^[45]。Scanlon 和 Kiely^[46] 在连续8个月的涡度协方差方法的通量监测试验中, 记录了3个主要的脉冲峰,这3个事件的发生时间总 和共 16 d(占总监测时间的 6.6%),但是其对累计通量 的贡献高达 51%,高于本研究脉冲的贡献 38.5%。一 些研究报道 N₂O 通量随着温度的升高而增加,通常 遵循 Arrhenius 函数^[47-48]。然而在本研究中温度和 N₂O 排放不存在非线性关系。

3.2 降雨与小麦田 N₂O 排放

土壤水分是影响温室气体产生与排放的重要因 素之一,它不仅是土壤中营养物质的运输载体,而且 可以通过改变土壤通气性等因素影响土壤生物地球 化学过程^[44]。本研究发现在月尺度上,降雨量与 N₂O 通量通量呈线性相关;在日尺度上,降雨当日小麦田 N₂O 通量的增幅最大,而随着时间增加,降雨的促进 作用快速减弱;小时尺度上的分析发现,降雨事件发 生后(包括降雨当日以及雨后1 d), 在4个阶段都观 察到了 N₂O 脉冲峰。由此可见,降雨对 N₂O 排放有 明显的促进作用,且土壤释放的 N₂O 对降雨事件的 响应比较迅速(主要集中在雨后的几小时内),同时降 雨的影响能持续1~2 d。许多研究都发现,降雨后 N₂O 排放量增加。徐文彬等^[49]针对贵州省旱田的研 究表明,降雨量>5 mm的降雨事件与土壤出现 N₂O 脉冲峰间的耦合关系达 100%,因此降雨事件与 N₂O 排放峰间存在明显的驱动-响应关系,这可以解释本 研究中距上次降雨日差这一解释因子对小麦田 N₂O 排放贡献率最大的原因。Vidon 等^[50]用箱式法在模拟 降雨的试验中观测到,雨后 5~24 h 内土壤 N₂O 排放 明显增加,但随着土壤湿度恢复到降雨前的水平,土 壤 N₂O 排放降低甚至变为负值。由于小麦田生长季 中无灌溉,降雨直接改变小麦田土壤的水分状况,从 而直接或间接地影响微生物的硝化反硝化过程。

在小麦生长季的不同阶段 N₂O 脉冲峰对降雨有 不同的响应,同时脉冲峰的大小和持续的时间还受到 温度、土壤养分供应等其他因子的交互影响。本研究 在降雨当日以及降雨后1d都观测到了脉冲峰。土壤 的干湿交替为硝化反硝化作用的交替进行创造了环 境,许多文献也报道了干旱土壤润湿后触发 N₂O 脉 冲的现象^[51-53]。而本研究在第3、第4阶段降雨后1d N₂O 通量变化中没有观测到脉冲峰,这可能和底物的 消耗有关。类似的现象在土壤 CO2 通量观测中被报 道,连续的干湿交替常常表现出减少 CO₂ 排放的脉 冲幅度[54]。欧阳扬和李叙勇[55]等也报道,随着干湿 交替频率降低,再湿润阶段的通量释放速率增大,多 次的干湿交替后,最后一次再润湿阶段 N₂O 通量的 激发强度明显减弱。降雨量大、频率高有利于土壤严 格厌氧条件的迅速形成,这可能是第3、4阶段未观 测到明显脉冲的原因。降雨当日的 N₂O 排放(图 4)在 第1、3、4阶段均出现明显的脉冲峰,峰值占一天释 放量的比例高达 54.1%(第 4 阶段)。Wu 等^[44]的研究 发现,冻融事件带来的脉冲甚至占据全年排放量的 73.3%。Molodovskaya 等^[24]观测了 2006—2009 年的 苜蓿-玉米轮作田 N₂O 排放 ,发现 N₂O 背景通量普遍 低于 $6.5 \text{ mg/(m^2 \cdot h)}$, 但降雨、冻融等触发的脉冲达 39.7 mg/(m²·h),对 N₂O 总净排放量贡献了 71%~ 102%。由此可见,脉冲是 N₂O 主要的排放形式,对 通量日排放甚至年总排放量的贡献不容忽视。虽然本 研究第 3 阶段时降雨量和施肥量最大,但最高的脉冲 峰出现在第 4 阶段,达 553.49 kg/(m²·h),这可能与 温度有关。

3.3 施肥与小麦田 N₂O 排放

大量研究表明,施用氮肥增加土壤氮素含量,为 微生物的硝化、反硝化过程提供丰富的 NO_3^- 、 NH_4^+ , 从而明显促进土壤 N₂O 排放^[29,56]。Zhang 等^[31]在对 菜地基肥或追肥后一周内观察到强烈的 N₂O 排放峰, 而在本研究中施肥的影响也存在时滞,氮肥的添加对 小麦田 N₂O 排放的促进作用在施肥后一周左右表现 出来,且距上次施肥日差是影响小麦田 N₂O 排放的 重要因子之一。许多研究者在农田中的研究发现,施 肥会增加硝化和反硝化作用速率,从而促进土壤 N₂O 排放;施氮的影响可以持续几天至几周不等,当反应 底物逐渐消耗, N₂O 排放恢复^[28, 57]。关于施肥量与 N₂O 排放的关系,一些文献综述了近年来在不同地区 的野外研究,得出较为一致的结论^[15, 58],即随着施 氮量的增加,土壤 N₂O 排放呈线性增加的趋势。本 研究中,由于施肥次数有限且连续两次施肥活动间隔 短,为避免多次施肥的叠加影响,本文未能对施肥的 持续影响时间做进一步分析。同时可能由于数据量的 限制,本研究中施氮量这一 N₂O 通量变化的解释因 子的贡献率最低(图 6F)。

本研究在小麦的不同生长阶段施用尿素或者 复混肥。作为硝化和反硝化作用的底物,可利用性 无机氮素是刺激土壤 N₂O 排放的关键因素。无机 氮的添加对 N₂O 通量的影响已经被广泛的研究和 综述^[2, 29, 59]。尿素为硝化作用提供底物,并且硝化 产物 NO3 又可以作为反硝化作用的底物。因此,小麦 田 N₂O 可以通过硝化过程或随后的反硝化过程从尿 素中产生。本研究施用的复混肥中含有一定量的有机 肥。考虑到有机氮肥的成分组成,向土壤中添加有机 氮肥可以通过提供必要的碳底物来驱动微生物硝化 和反硝化过程,从而增加 N₂O 的排放^[60]。事实上, 关于施用无机氮肥或有机氮肥对 N₂O 排放的影响目 前还没有统一的结论。目前一篇综述分析发现两种土 壤管理方法下的 N₂O 排放没有显著的差异^[57]。但针 对美国中西部玉米田的分析发现,施用粪肥比施用有 机氮肥的土壤释放出更多的 N₂O^[61]。然而,这些作 者也指出,一些研究中有机氮肥的施用速率比无机氮 肥高,可能因此导致施用有机肥的土壤中 N₂O 释放 量更大。

3.4 降雨和施肥的交互影响

施用有机和无机氮肥主要影响如下因素 :土壤有

机碳、结构、水分、pH、氮素水平,而降雨会在短 期内显著改变土壤孔隙水、pH、无机氮浓度等。N₂O排 放的微生物过程会受到多个因子的交互作用影响[62],对 于旱作农田,降雨和施肥活动是影响 N₂O 排放的两 个关键因素。氮素添加为土壤提供丰富的硝化反硝化 作用底物,施肥后降雨事件的发生很有可能触发小麦 田 N₂O 排放的脉冲,并且二者的叠加影响激发更大 的排放。类似的现象在玉米田的研究中被报道:该研 究中,第1次施肥后没有降雨,土壤 N₂O 通量未检 测到明显变化,而第2次施肥后立刻发生3.02 mm的 降水事件,明显的通量脉冲被观测到,且这种较高的 排放在降雨后持续了 3~4 d^[28]。这与本研究的结论 一致。氮素添加通过刺激微生物的硝化和反硝化过 程 增加土壤中的无机氮含量,可能导致大量的 NO₃ 积 累在土壤中。通过反硝化产生的 N₂O/N₂比例随土壤 NO3 含量的增加而增加^[63],从而促进 N₂O 排放。因 此前期的施肥为微生物提供了丰富的底物,随后降水 事件引发的水分条件的瞬时改变可能会持续短期(或 几天),在这个阶段中土壤厌氧条件占主导地位,反 硝化速率显著增加从而促进 N₂O 排放^[64]。其他研究 指出,也可能是降雨后土壤孔隙中充满水而排出高浓 度气体, N₂O 排放量增大^[65],本研究可能发生了相 同的机制。在本研究中,施肥事件对小麦田 N₂O 释 放的促进作用在施肥后第5天表现出来,而降雨事件 对通量排放的影响通常是短时的(1~2 d),但综合考 虑施肥和降雨的组合,在施肥后1~8d内降雨,对 通量排放均有明显的促进作用,可见这两个因素对土 壤 N₂O 排放的叠加影响会增强降雨和施肥事件对农 田 N₂O 排放的贡献。这可能是降雨施肥日差这一解 释因子的重要性仅次于距上次降雨日差的原因。而随 着施肥和降雨事件的间隔越久,超过8d后施肥和降 雨的叠加影响减弱,这可能是由于底物的消耗。因此, 施肥和降雨事件的日差作为一个影响农田 N₂O 排放 的因子不应该被忽视。

土壤系统中各个因子交互作用,控制着氮循环过 程。土壤质地、冻融、降水事件和温度均显著影响 N₂O 的排放,但这些因素很难轻易地通过人工管理来 控制^[30]。其他影响 N₂O 排放并且可以通过田间管理 控制的因子包括:土壤有机碳含量、硝酸盐及铵盐的 含量、氮肥施用量及种类和施用方式、土壤氧气含 量、微生物丰度和活性、土壤 pH、土壤水分以及 作物种类。氮肥的应用以及降雨事件会影响到上述 许多因素^[60],各因子的交互作用影响 N₂O 排放的相 对变化(例如,土壤水分的变化会影响微生物活性,

同时无机氮含量也会受到影响)[66-67]。土壤水分能够 直接调节土壤微生物的氧气可利用性,是 N₂O 排放 的主要驱动力^[15]。排水受限的土壤,即使土壤水分 不完全饱和,也更容易排放较多 N₂O。例如,细纹理 土壤通常含水量较大同时排放较多的 N₂O^[57],因此 可以通过修复或改变土壤的结构,增加土壤通气性从 而降低 N₂O 排放。已有研究证明增加土壤团聚体 的稳定性可以在细纹理土壤团聚体之间产生较大 的土壤孔隙,从而增加土壤的氧气含量减少 N₂O 排放^[68-69]。相比施用无机肥,施用有机肥的土壤倾 向于具有更大的团聚体稳定性^[70],因此有机肥一定 程度上可以减少 N₂O 排放,尤其对于细纹理土壤。 但同时土壤孔隙中的氧气含量是由土壤水分以及微 生物活性决定的,所以施加微生物呼吸较高的有机氮 肥可能会降低土壤氧气含量并增加 N₂O 排放量。这 些物理和生物过程相互作用影响土壤水分和氮素含 量。考虑到施肥和降雨对 N₂O 排放的综合影响较为 复杂且往往触发的脉冲较大,在许多野外研究中可能 会被错失^[28],因此针对不同生态系统还需要进一步 探索。

4 结论

本研究使用涡度协方差方法观测了 2014—2015 年冬小麦 N₂O 通量,发现小麦田 N₂O 排放没有明显 的季节变化模式,主要以脉冲的形式释放。相比于温 度,降雨和施肥是引发小麦田 N₂O 脉冲的主要因子。 降雨触发的脉冲占 N₂O 总排放量的比例高达 29.4%, 施肥的贡献比例达 19.2%, 其中由"水肥"组合带来 的排放占比为 15.2%, 同时"水肥"组合引发的脉冲 次数占所有脉冲事件的 42.3%。施肥对小麦田 N₂O 排放的促进作用在施肥后一周左右表现出来,虽然通 量对施肥活动的响应存在时滞,但是距离上次施肥日 差这一解释因子的贡献率为 24.8%, 是影响小麦田 N₂O 排放的重要因子。降雨对小麦田 N₂O 排放有明 显的促进作用,且 N₂O 排放对降雨事件的响应比较 迅速(主要集中在雨后的几小时内),同时降雨的影响 能持续 1 ~ 2 d。对于小麦田来说,降雨触发的 N_2O 脉冲对日通量排放的贡献高达 54.1%。因此,距离上 一次降雨日差这一因子的贡献率最大。综合考虑施肥 和降雨的交互影响,在施肥后1~8d内发生的降水 事件,对于小麦田 N₂O 的释放都有明显的促进作用, 因此施肥降雨日差这一解释因子的重要程度不容忽 视。对于小麦田等旱田来说,降雨是影响大而又无法 人为控制的因素。因此为减少 N₂O 排放同时保证肥

料施用的效果,更重要的途径在于控制施肥的时机和 种类等。雨后施用尿素更容易促进水解,从而促进 N₂O产生,因此可以考虑降雨前有机和无机肥的综合 施用,保障农作物产量的同时降低农田 N₂O 的排放。

致谢:感谢复旦大学肖向明教授、李香萍老师等的指导,感谢复旦大学王莹冰、辛凤飞的帮助。

参考文献:

- Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nature Geoscience, 2009, 2(9): 659–662
- [2] Bouwman A F, Boumans L J M, Batjes N H. Emissions of N₂O and NO from fertilized fields: Summary of available measurement data[J]. Global Biogeochemical Cycles, 2002, 16(4): 1058
- [3] Drury C F, Reynolds W D, Tan C S, et al. Emissions of nitrous oxide and carbon dioxide: Influence of tillage type and nitrogen placement depth[J]. Soil Science Society of America Journal, 2006, 70(2): 570–581
- [4] Goodroad L L, Keeney D R, Peterson L A. Nitrous Oxide Emissions from Agricultural Soils in Wisconsin[J]. Journal of Environmental Quality, 1984, 13(4): 557–561
- [5] Khalil M I, Rosenani A B, Van Cleemput O, et al. Nitrous oxide emissions from an ultisol of the humid tropics under maize-groundnut rotation[J]. Journal of Environmental Quality, 2002, 31(4): 1071–1078
- [6] Venterea R T, Burger M, Spokas K A. Nitrogen oxide and methane emissions under varying tillage and fertilizer management[J]. Journal of Environmental Quality, 2005, 34(5): 1467–1477
- [7] Deng J, Zhou Z, Zheng X, et al. Annual emissions of nitrous oxide and nitric oxidefrom rice-wheat rotation and vegetable fields: a case study in the Tai-Lake region, China[J]. Plant and Soil, 2012, 360: 37–53
- [8] Zhang J, Li H, Wang Y, et al. Multiple-year nitrous oxide emissions from a greenhouse vegetable fieldin China: Effects of nitrogen management[J]. Science of the Total Environment, 2018, 616: 1139–1148
- [9] Yan H, Liyong X, Liping G, et al. Characteristics of nitrous oxide emissions and the affecting factors from vegetable fields on the North China Plain[J]. Journal of Environmental Management, 2014, 114: 316–321
- [10] Min J, Shi W, Xing G, et al. Nitrous oxide emissions from vegetables grown in a polytunnel treated with high rates of applied nitrogen fertilizers in Southern China[J]. Soil Use and Management, 2012, 28(1): 70–77
- [11] Chen Z, Yang S Q, Zhang A P, et al. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China[J]. Journal of Integrative Agriculture, 2018, 17(1): 231–246
- [12] Cui F, Yan G, Zhou Z, et al. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain[J]. Soil Biology & Biochemistry, 2012, 48: 10–19

- 第5期
- [13] Parkin T B, Kaspar T C. Nitrous oxide emissions from corn-soybean systems in the Midwest[J]. Journal of Environmental Quality, 2006, 35(4): 1496–1506
- [14] 赵苗苗, 张文忠, 裴瑶, 等. 农田温室气体 N₂O 排放研 究进展[J]. 作物杂志, 2013, (4): 25-31
- [15] Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621): 20130122
- [16] Stehfest E, Bouwman L. N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207–228
- [17] Hoben J P, Gehl R J, Millar N, et al. Nonlinear nitrous oxide (N₂O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest[J]. Global Change Biology, 2011, 17(2): 1140–1152
- [18] Kremen A, Bear J, Shavit U, et al. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates[J]. Environmental Science& Technology, 2005, 39(11): 4180–4188
- [19] Scheer C, Grace P R, Rowlings D W, et al. Nitrous oxide emissions from irrigated wheat in Australia: impact of irrigation management[J]. Plant and Soil, 2012, 359(1-2): 351–362
- [20] Ju X, Lu X, Gao Z, et al. Processes and factors controlling N₂O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions[J]. Environmental Pollution, 2011, 159(4): 1007–1016
- [21] Liang L L, Grantz D A, Jenerette G D. Multivariate regulation of soil CO₂ and N₂O pulse emissions from agricultural soils[J]. Global Change Biology, 2016, 22(3): 1286–1298
- [22] Rafique R, Kumar S, Luo Y Q, et al. Estimation of greenhouse gases (N₂O, CH₄ and CO₂) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach[J]. Global and Planetary Change, 2014, 118: 106–114
- [23] 梁东丽, 同延安, Emyteryd O, 等. 干湿交替对旱地土壤
 N₂O 气态损失的影响[J]. 干旱地区农业研究, 2002, 20(2):
 28-31
- [24] Molodovskaya M, Singurindy O, Richards B K, et al. Temporal Variability of Nitrous Oxide from Fertilized Croplands: Hot Moment Analysis[J]. Soil Science Society of America Journal, 2012, 76(5): 1728–1740
- [25] Zheng X H, Han S H, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N₂O emission from Chinese croplands[J]. Global Biogeochemical Cycles, 2004, 18(2): GB2018
- [26] Wang K, Zheng X, Pihlatie M, et al. Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes

from a cotton field[J]. Agricultural and Forest Meteorology, 2013, 171: 9–19

- [27] Jones S K, Famulari D, Di Marco C F, et al. Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements[J]. Atmospheric Measurement Techniques, 2011, 4(10): 2179–2194
- [28] Huang H, Wang J, Hui D, et al. Nitrous oxide emissions from a commercial cornfield (*Zea mays*) measured using the eddy covariance technique[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12839–12854
- [29] Mondal S, Mallikarjun M, Ghosh M, et al. Influence of integrated nutrient management (INM) on nutrient use efficiency, soil fertility and productivity of hybrid rice[J]. Archives of Agronomy and Soil Science, 2016, 62(11): 1521–1529
- [30] Hatfield J L. Soil and nitrogen management to reduce nitrous oxide emissions[M]. Madison W I, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., 2016: 90–109
- [31] Zhang Y J, Lin F, Jin Y G, et al. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China[J]. Scientific Reports, 2016, 6: 20700
- [32] Yan G, Zheng X, Cui F, et al. Two-year simultaneous records of N₂O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third[J]. Agriculture Ecosystems & Environment, 2013, 178: 39–50
- [33] 郝小雨,高伟,王玉军,等. 有机无机肥料配合施用对 设施菜田土壤 N₂O 排放的影响[J]. 植物营养与肥料学报, 2012,18(5):1073–1085
- [34] Shi Y, Wu W, Meng F, et al. Integrated management practices significantly affect N₂O emissions and wheat-maize production at field scale in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2013, 95(2): 203–218
- [35] Eugster W, Zeyer K, Zeeman M, et al. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest[J]. Biogeosciences, 2007, 4(5): 927–939
- [36] Nelson D. TDLWintel User's Manual[M]. Billerica, MA, USA: Aerodyne Research, 2002
- [37] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(31): 512– 526
- [38] Rebmann C, Kolle O, Heinesch B, et al. Data acquisition and flux calculations[M]//Aubinet M, Vesala T, Papale D. Eddy Covariance. Dordrecht: Spinger, 2012
- [39] Schotanus P, Nieuwstadt F T M, Debruin H A R. Temperature-Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes[J]. Boundary-Layer Meteorology, 1983, 26(1): 81–93
- [40] Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and

water-vapor transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447): 85–100

- [41] Foken T, Gockede M, Mauder M, et al. Post-field data quality control. Handbook of micrometeorology: A guide for surface flux measurement and analysis[M]. Dordrecht: Springer, 2004, 181–208
- [42] Ma J, Xiao X, Qin Y, et al. Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/ PALSAR mosaic data[J]. Forest Ecology and Management, 2017, 389: 199–210
- [43] Walfish S. A Review of Statistical Outlier Methods[J]. Pharmaceutical Technology, 2006, 30(11): 82–86
- [44] Wu X, Brueggemann N, Gasche R, et al. Environmental controls over soil-atmosphere exchange of N₂O, NO, and CO₂ in a temperate Norway spruce forest[J]. Global Biogeochemical Cycles, 2010, 24(2). DOI:10.1029/2009 GB003616
- [45] Kroon P S, Hensen A, Jonker H J J, et al. Suitability of quantum cascade laser spectroscopy for CH₄ and N₂O eddy covariance flux measurements[J]. Biogeosciences, 2007, 4(5): 715–728
- [46] Scanlon T M, Kiely G. Ecosystem-scale measurements of nitrous oxide fluxes for an intensely grazed, fertilized grassland[J]. Geophysical Research Letters,2003, 30(16): 337–356
- [47] Bateman E J, Baggs E M. Contributions of nitrification and denitrification to N₂O emissions from soils at different water-filled pore space[J]. Biology and Fertility of Soils, 2005, 41(6): 379–388
- [48] Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2003, 54(4): 779–791
- [49] 徐文彬, 洪业汤, 陈旭晖, 等. 贵州省旱田土壤 N₂O 释 放及其环境影响因素[J]. 环境科学, 2000, 21(1): 7–11
- [50] Vidon P, Marchese S, Welsh M, et al. Impact of precipitation intensity and riparian geomorphic characteristics on greenhouse gas emissions at the soil-atmosphere interface in a water-limited riparian zone[J]. Water Air and Soil Pollution, 2016, 227(1): 8
- [51] Manalil S, Riethmuller G, Flower K. Rapid emission of nitrous oxide from fallow over summer following wetting in a Mediterranean-type environment[J]. Soil & Tillage Research, 2014, 143: 130–136
- [52] Guo X, Drury C F, Yang X, et al. The extent of soil drying and rewetting affects nitrous oxide emissions, denitrifycation, and nitrogen mineralization[J]. Soil Science Society of America Journal, 2014, 78(1): 194–204
- [53] Harrison-Kirk T, Beare M H, Meenken E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions[J]. Soil Biology & Biochemistry, 2013, 57: 43-55

- [54] Chatterjee A, Jenerette G D. Changes in soil respiration Q(10) during drying-rewetting along a semi-arid elevation gradient[J]. Geoderma, 2011, 163(3/4): 171–177
- [55] 欧阳扬, 李叙勇. 干湿交替频率对不同土壤 CO₂ 和 N₂O 释放的影响[J]. 生态学报, 2013, 33(4): 1251-1259
- [56] 方雅各, 解鈺, 王丽华, 等. 等氮量下不同分施次数对 燥红壤 N₂O 排放的影响[J]. 土壤, 2018, 50(2): 347-352
- [57] Abalos D, Jeffery S, Drury C F, et al. Improving fertilizer management in the US and Canada for N₂O mitigation: Understanding potential positive and negative side-effects on corn yields[J]. Agriculture Ecosystems & Environment, 2016, 221: 214–221
- [58] Gregorich E G, Rochette P, Vandenbygaart A J, et al. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J]. Soil & Tillage Research, 2005, 83(1): 53–72
- [59] Shi Y, Wu W, Meng F, et al. Integrated management practices significantly affect N₂O emissions and wheatmaize production at field scale in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2013, 95(2): 203–218
- [60] Thangarajan R, Bolan N S, Tian G, et al. Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment, 2013, 465: 72– 96
- [61] Decock C. Mitigating nitrous oxide emissions from corn cropping systems in the midwestern US: Potential and data gaps[J]. Environmental Science & Technology, 2014, 48(8): 4247-4256
- [62] Venterea R T, Coulter J A, Dolan M S. Evaluation of intensive "4R" strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn[J]. Journal of Environmental Quality, 2016, 45(4): 1186–1195
- [63] Weier K L, Doran J W, Power J F, et al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate[J]. Soil Science Society of America Journal, 1993, 57(1): 66-72
- [64] Jacinthe P A, Bills J S, Tedesco L P, et al. Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency[J]. Journal of Environmental Quality, 2012, 41(1): 95–105
- [65] Aguilera E, Lassaletta L, Sanz-Cobena A, et al. The potential of organic fertilizers and water management to reduce N₂O emissions in Mediterranean climate cropping systems. A review[J]. Agriculture Ecosystems & Environment, 2013,164: 32–52
- [66] 吕金岭,刘骅,王西和,等.施肥处理对春季冻融期灰 漠土农田温室气体排放的影响[J].土壤学报,2018,55(1): 159-173
- [67] 田路路, 隽英华, 刘艳, 等. 冻融作用对农田土壤可溶 性氮组分的影响[J]. 土壤, 2017, 49(3): 512-518
- [68] Hu H, Chen D, He J. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews, 2015, 39(5): 729-749

- [69] 毛霞丽,陆扣萍,何丽芝,等.长期施肥对浙江稻田土 壤团聚体及其有机碳分布的影响[J].土壤学报,2015, 52(4):828-838
- [70] Mader P, Fliessbach A, Dubois D, et al. Soil fertility and biodiversity in organic farming[J]. Science, 2002, 296: 1694–1697

Effects of Precipitation and Fertilization on N₂O Discharge from Wheat Field in Chongming Island, Shanghai Estimated by Eddy Covariance Technology

ZHANG Mengshan¹, GUO Haiqiang¹, MA Jun¹, LI Hong¹, DAI Shengqi¹, GU Kaihua^{2*}, GAO Wei³, ZHAO Bin¹

 (1 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai Chongming Dongtan Wetland Ecosystem Research Station, Shanghai 200438, China; 2 Shanghai Meteorological Service, Shanghai 202150, China; 3 Yangtze River Delta Center for Environmental Meteorology Prediction and Warning, Shanghai 200030, China)

Abstract: As a major source of N₂O emissions, cropland has been researched more, with precipitation and fertilization being considered as the natural and anthropogenic key factors that affecting N₂O emissions in wheat fields, respectively. Given the low sampling frequency, most previous studies using the static chamber method may underestimate N₂O emissions. Meanwhile, the potential interaction effect of precipitation and fertilization on cropland N₂O emissions have been neglected. In this study, we reported the dynamics of N₂O emissions and investigated the effects of precipitation and fertilization on N₂O emission from wheat fields at different time scales based on the eddy covariance observation. Meanwhile, the Boosted Regression Trees method was adopted to quantify the precipitation and fertilization-related factors. The results showed that there were no obvious seasonal and diurnal variation patterns of N₂O flux in wheat fields. The average daily N₂O emissions was N₂O-N 666.5± 669.4 µg/(m²·d) in this study, which was mainly released as a pulse. The ratios of precipitation and fertilization-induced pulses to total N₂O emissions in wheat fields were 29.4% and 19.2%, respectively. Precipitation increased N₂O emissions, and which responded rapidly to the precipitation events (mainly within a few hours after the precipitation). Meanwhile, the precipitation promotion could last 1–2 days. Fertilization also increased N₂O emissions, but existed a one-week lag. Considering the interactive effects of precipitation and fertilization, precipitation events occurring within 1–8 days after fertilization significantly promoted the emission of N₂O. Therefore, the interaction of precipitation and fertilization should not be neglected.

Key words: N₂O emission; Precipitation; Fertilization; Eddy covariance