DOI: 10.13758/j.cnki.tr.2021.03.010

沈晓忆,夏围围,张洁,等.硝化抑制剂与尿素配施对旱地土壤温室气体排放及硝化微生物的影响.土壤,2021,53(3):512-521.

硝化抑制剂与尿素配施对旱地土壤温室气体排放及硝化微生物的影响^①

沈晓忆1,夏围围1*,张 洁1,贾仲君2

(1 南京信息工程大学应用气象学院,南京 210044;2 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

摘 要:为明确施肥措施对旱地土壤温室气体排放的综合效应及微生物机理,采集典型麦田土壤进行室内微宇宙培养,研究了双氰 胺(DCD)和烯丙基硫脲(ATU)分别与尿素配施对旱地土壤氮素转化及 N₂O、CO₂和 CH₄排放的影响,同时监测了不同类型微生物群 落的动态变化。结果表明氨氧化细菌(AOB)主导了施氮麦田土壤硝化过程及 N₂O 排放。单施尿素促进 AOB 迅速繁殖,使 N₂O 排放 总量提高 235%,同时促进了细菌生长,CO₂排放量增加 18.5%。DCD 与尿素配施极大程度抑制了 AOB 的生长,显著降低了 N₂O 排放(59.4%),但促进了细菌的生长并提高了 CO₂的排放总量(50.6%)。而 ATU 与尿素配施同时抑制了真菌、细菌和 AOB 的生长,对反硝化细菌的影响则相反,使 CO₂和 N₂O 排放分别下降 28.4% 和 35.2%。与不施肥相比,氮肥及与两种硝化抑制剂配施均显著 降低了 CH₄的排放量。3 种温室气体的综合温室效应在处理间差异显著:Urea+DCD>Urea>CK>Urea+ATU。CO₂排放对综合温室效 应的贡献最大,CO₂和 N₂O 的贡献之和大于 98.4%。该研究为深刻理解农田土壤中的微生物行为及生态学效应,合理使用硝化抑制 剂以及减缓温室气体排放提供科学依据。

关键词:温室气体;土壤微生物;氮转化;烯丙基硫脲;双氰胺

中图分类号: X171; S154.3 文献标志码: A

Effects of Combined Application of Nitrification Inhibitors and Urea on Greenhouse Gas Emission and Ammonia Oxidizers in An Upland

SHEN Xiaoyi¹, XIA Weiwei^{1*}, ZHANG Jie¹, JIA Zhongjun²

(1 College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract: The emission pattern of greenhouse gas (GHG) has been intensively investigated in different agro-ecosystems, but the underlying microbial mechanism in soil is still poorly understood, especially under many possible measures for improving nitrogen utilization. Thus, a 28-day laboratory microcosm experiment was conducted with an upland soil to investigate the effect of urea and two nitrification inhibitors on nitrogen turnover process and global warming potentials (GWP) of N₂O, CO₂ and CH₄, in which four treatments were established: CK (no fertilizer and inhibitor were applied), Urea (N 100 µg/g was applied to soil), Urea+15% Dicyandiamide (DCD, 15% of Urea-N in quantity), Urea+5% Allylthiourea (ATU, 5% of Urea-N in quantity). Meanwhile, the dynamics of different microbial abundances in treatments were also quantified by real-time quantitative PCR (qPCR). The results showed that ammonia-oxidizing bacteria (AOB) predominated intensive nitrification process and N₂O emission in soil with urea application. Urea stimulated AOB growth and increased cumulative N₂O by 235%, which rapidly occurred during the first 14 days. Bactria abundance raised in response to urea and improved CO₂ by 50.6%. Urea+ATU exhibited a strong toxicity on both bacteria and fungi and led to a decrease of CO₂ by 28.4%, but unexpectedly didn't show any inhibition on nitrification intensity. A slight but significant inhibition and stimulation were observed on AOB and denitrifiers by ATU, respectively, but total emission of N₂O fell by 35.2%. CH₄ emission was inhibited in all treatments with urea and inhibitors.

①基金项目:国家自然科学基金项目(41501267)和土壤与农业可持续发展国家重点实验室开放课题项目(Y20160025)资助。

^{*} 通讯作者(wwxia@nuist.edu.cn)

作者简介: 沈晓忆(2000—), 女, 江苏苏州人, 本科生, 主要研究方向为农田土壤硝化过程的调控机理。E-mail: shen_xiaoyi0721@163.com

Key words: Greenhouse gas; Nitrogen turnover; Soil microorganism; Allylthiourea; Dicyandiamide

氮肥能够满足作物生长对氮(N)元素的需求,是 我国农业生产中施用最广的肥料,但利用率平均不足 35%^[1]。土壤微生物驱动了农田生态系统的氮素转 化,加速了氮素损失。由氨氧化细菌(AOB)和氨氧化 古菌(AOA)推动的硝化作用^[2-3],是旱地土壤中 NH[‡]-N向 NO₃⁻N转化的主要过程。快速产生的土壤 NO₃ -N 如不及时被植物吸收,则极易在土壤中淋溶 损失,降低氮肥的增产效益,同时导致水体富营养化 等环境问题。硝化过程易产生副产物 N₂O^[4],进一步 加剧了全球气候变化。研究表明 AOB 和 AOA 在不 同类型土壤硝化过程和 N₂O 排放过程中的贡献有较 大差异^[5-6]。除此之外,在土壤的厌氧微域,异养生 长的反硝化微生物也可能参与了无机氮的还原,促进 了 N₂O 的排放^[7]。

施用硝化抑制剂,可以选择性地抑制土壤硝化微 生物活性,影响氮素转化,减缓硝酸盐的产生以及降 低 N₂O 的排放。硝化抑制剂种类繁多,其中,双氰 胺(dicyandiamide, DCD)作为传统硝化抑制剂已被广 泛使用。大量田间试验研究表明 DCD 可显著抑制土 壤硝酸盐的积累^[8]以及减少 N₂O 的排放^[9]。但也有研 究结果显示 DCD 不能抑制土壤硝化作用以及氨氧化 微生物的生长^[10]。DCD 抑制效果的差异,除了受土 壤 pH、土壤有机质含量和土壤类型等理化因素影响 外,还可能与土壤中不同类型氨氧化微生物对 DCD 的敏感程度有关^[11-12]。烯丙基硫脲(allylthiourea, ATU) 是一种实验室常用的新型硝化抑制剂。在液体培养基 和活性污泥反应器中发现, ATU 能显著抑制氨氧化 细菌,而对古菌不敏感^[13-14],表明在针对性抑制 AOB 主导的土壤硝化过程中具有应用价值,同时具有减少 N₂O 排放的潜力。但 ATU 在土壤中的有效施用量及 对农田土壤 N₂O 排放的贡献鲜见报道。

农业活动是主要的温室气体(CO₂、N₂O和CH₄) 排放源之一,对全球温室气体排放总量的贡献率达 14%^[15],对全球增温的贡献率达 80%^[16]。硝化抑制 剂与氮肥配施不仅能够抑制 N₂O 的排放,同时还可 能改变土壤 pH、无机氮含量、有机质含量以及不同 微生物类群的活性,从而影响土壤另外两种主要温室 气体 CO₂和 CH₄的排放。目前,DCD 生态效应的研 究多集中在参与 N 素转化的硝化微生物以及对温 室气体 N₂O 排放的影响,而其对 CO₂、N₂O 和 CH₄ 3 种温室气体排放的综合增温效应及内在微生物机 制报道较少。ATU 的相关研究则更加缺乏。因此, 研究不同硝化抑制剂的综合生态效应,不仅有助于提 高氮素利用率,还能为制定有效的综合温室气体减排 措施提供理论依据。

综上所述,我们认为 DCD 和 ATU 能够通过抑 制硝化作用减少 N₂O 排放,并降低综合温室效应。 基于以上假设,本研究采集典型麦田土壤,采用室内 微宇宙培养法进行培养,并结合分子生物学手段,分 析了尿素及与不同类型硝化抑制剂(DCD 和 ATU)配 施对旱地土壤氮素转化及 N₂O、CO₂和 CH₄ 排放的影 响,同时监测了不同类型微生物群落的动态变化。该 研究也为深化碳氮循环过程的微生物机理提供一定 的理论依据。

1 材料与方法

1.1 供试土壤

供试土壤取自于南京信息工程大学农业气象试 验站(32 07'N, 118 50'E)。样品采集时间为 2017 年 3 月。采用五点交叉取样法,用土钻采集 0~20 cm 的 耕层土壤 500 g。将供试土壤去除杂物、植物残体,研 磨过 2 mm 筛,并混合均匀,组成混合代表土样,保存 于 4 ℃待用。该土壤的基本理化性质为: pH 5.86,含 水率 2.85%,NO₃[¬]N 10.21 mg/kg,NH⁺₄-N 9.37 mg/kg, 有机碳 33.8 g/kg。

1.2 土壤室内微宇宙培养

本次培养设置 4 个处理:①CK,以等体积灭菌 水代替其他试剂加入土壤;②Urea,尿素按 N 100 µg/g 加入土壤,其他施氮处理的尿素用量与此相同; ③Urea+DCD,DCD 用量为 15 µg/g(尿素含氮量的 15%)^[17-18];④Urea+ATU,ATU 用量为 5 µg/g(尿素含 氮量的 5%)。具体流程:称取相当于 6.0 g 干土的新 鲜土壤于 120 ml 血清瓶中,加入无菌去离子水调节 土壤水分至最大持水量 40%,用丁基橡胶塞密封,并 用铝盖封口,于 28 ℃ 黑暗中预培养 24 h,以恢复 土壤微生物活性。预培养后,将培养瓶取出,打开橡

壤

胶塞,用压缩空气冲洗血清瓶上部空间 1 min。加入 对应底物至每个血清瓶底部土壤中,使土壤水分达最大 持水量的 60%,塞紧橡胶塞,并用铝盖封口,于 28 ℃ 黑暗条件培养 28 d。每个处理 6 个重复。

1.3 CO₂、N₂O、CH₄的排放动态

在 0、7、14、21、28 d 分别采集血清瓶上部气体样品,使用气象色谱仪(Agilent 7890)对 3 种温室气体 CO₂、N₂O 和 CH₄浓度进行检测。每个处理 3 个重复。采气后,打开铝帽和橡胶塞,用压缩空气冲洗血清瓶,再塞上橡胶塞和铝帽,重新置于 28 C 继续培养。以每种气体的周排放量之和,表示每种气体的累积排放量。

综合温室效应(global warming potentials, GWP) 表示相同质量的不同温室气体对温室效应增加的相 对辐射效应。在 100 a 时间尺度上, CH₄和 N₂O 的增 温潜势分别是按照单位质量 CO₂的 25 倍和 298 倍^[19]。 由 CO₂、N₂O、CH₄的累积排放量,根据以下公式进 行综合温室效应计算:

 $GWP = GWP_{CO_2} + GWP_{N_2O} \times 298 + GWP_{CH_4} \times 25$

1.4 土壤 NH₄⁺-N、NO₃⁻-N 分析

在 0、14、28 d 进行破坏性采样。每个血清瓶取 1.5 g 土壤保存于 -20 ℃,用于后续分子生物学分析; 剩余土壤用于 NH⁴₄-N、NO⁵₃-N 分析,每个处理 3 个 重复。分别采用酚二磺酸比色法和靛酚蓝比色法进行 土壤 NO⁵₃-N 和 NH⁴₄-N 的测定。以土壤 NO⁵₃-N 的增 加量表示土壤的硝化强度。

1.5 土壤微生物 DNA 提取

采用 FastDNA[®] Spin Kit for Soil(MP Biomedicals) 试剂盒提取土壤总 DNA,溶解于 70 μl 无菌水。通过 微量紫外分光光度计(Nano Drop[®] ND-1000 UV-Vis) 测定 DNA 浓度和纯度(OD₂₆₀/OD₂₈₀ 和 OD₂₆₀/OD₂₃₀), 确保大部分 DNA 样品 OD₂₆₀/OD₂₈₀ 值介于 1.8 ~ 2.0, 以保证 DNA 质量。同时利用 1.2% 琼脂糖凝胶电泳 分析 DNA 的完整性和相对浓度。

1.6 土壤微生物的实时荧光定量 PCR 监测

实时荧光定量 PCR 在 CFX96 Optical Real-Time Detection System(Bio-Rad)定量 PCR 仪上进行。分别 对 6 个特定基因进行定量,引物和定量 PCR 条件见 表 1。PCR 扩增反应体系为: 10 µl 的 SYBR[®] Premix EX TaqTM(Takara),上、下游引物(20 µmol/L)各 1.0 µl,加入 1.0 µl 稀释 20 倍的 DNA 模板,加入灭 菌双蒸水至 20 µl 反应体系。每次试验均采用无菌水 代替 DNA 作为严格的阴性对照。获得扩增产物后, 进一步通过 2.0% 琼脂糖凝胶电泳检测 PCR 产物的 特异性。

表1	荧ን	光实时定量	PCR	引物和反	反应条件
Table	× 1	Primers and	condit	ions used i	n study

(1)

Table 1 Trimels and conditions ased in study											
目标基因	引物名称	PCR 条件	参考								
			文献								
细菌16SrRNA基因	515F/907R	95 ℃预变性 3 min; 95 ℃变性 30 s, 55 ℃退火 30 s, 72 ℃延伸 30 s, 40 个循环	[20]								
古菌 16S rRNA 基因	771F/934R	95 ℃预变性 3 min; 95 ℃变性 30 s, 55 ℃退火 30 s, 72 ℃延伸 30 s, 40 个循环	[21]								
真菌18SrRNA基因	FR1/FF390	95 ℃预变性 3 min; 95 ℃变性 30 s, 50 ℃退火 30 s, 72 ℃延伸 60 s, 40 个循环	[22]								
细菌 amoA 基因	amoA-1F/amoA-2R	95 ℃预变性 3 min; 95 ℃变性 20 s, 56 ℃退火 30 s, 72 ℃延伸 30 s, 40 个循环	[23]								
古菌 amoA 基因	Arch-amoAF/Arch-amoAR	95 ℃预变性 3 min; 95 ℃变性 20 s, 55 ℃退火 30 s, 72 ℃延伸 45 s,, 40 个循环	[24]								
反硝化 nirK 基因	nirK1F/nirK5R	95 ℃预变性 3 min; 95 ℃变性 10 s, 58 ℃退火 30 s, 72 ℃延伸 30 s, 40 个循环	[25]								

1.7 数据处理

采用 SPSS 16.0 进行统计分析;采用单因素方差 分析检验同一处理不同时刻以及不同处理同一时刻 样品的差异显著性;采用 Pearson 双尾检验分析土壤 微生物各种特征基因丰度与温室气体 CO₂、N₂O、CH₄ 累计排放量以及土壤 NO₃-N 含量的相关性;最后利 用 Origin 8 作图。

2 结果

2.1 N₂O、CO₂和 CH₄通量变化及综合温室效应 N₂O、CO₂和 CH₄在处理间的排放趋势基本一致, 累积排放量与培养时间正相关,但不同气体的排放量 在处理间存在差异(图 1)。对于 N₂O 排放而言,单施 尿素刺激了 N₂O 的排放,28 d 培养期内的累积排放 量最高,达 1 622.0 ng/g,分别是 Urea+ATU、Urea+ DCD 和 CK 处理的 1.5 倍、2.5 倍和 3.4 倍。Urea 处 理前两周的 N₂O 周排放量高于 Urea+ATU 处理,后 两周无显著差异。Urea+DCD 处理的 N₂O 周排放量 均显著低于 Urea 和 Urea+ATU 处理;前 3 周的周排放 量与 CK 处理无显著差异,但第 4 周较 CK 显著提高。 培养 28 d,CK 处理 CO₂ 累积排放量为 1 391.3 μg/g。 单施尿素显著刺激了土壤 CO₂ 的产生,CO₂在 28 d

515

内的累积排放量增加 258.0 μg/g, 较 CK 处理增幅达 18.5%; 其中, 第 2 周内 CO₂排放最多,达 679.0 μg/g, 是 CK 的 3.0 倍。与 Urea 处理相比, Urea+DCD 处理显 著提高了 CO₂周排放(第 2 周除外), CO₂在 28 d 内的累 积排放量增加 50.6%;尤其第 3 周内 CO₂排放最多,达 1 351.2 μg/g,为总累积排放量的 54.4%。同样地,较

Urea 处理, Urea+ATU 处理在培养期间 CO₂ 周排放量 显著降低, 且 CO₂在 28 d 内的累积排放量减少 28.4%, 约占 CK 处理的 84.8%。CH₄在 28 d 内的累积排放量在 CK 处理中最高,约为 965.3 ng/g; Urea 和 Urea+DCD 处理次之且无显著差异,分别为 CK 的 71.4% 和 73.3%; Urea+ATU 处理最低,较 Urea 处理减少 27.1%。

图 1 培养期间各处理 N₂O、CO₂和 CH₄的排放动态及综合温室效应 Fig.1 Dynamics of greenhouse gas emission (CO₂, N₂O, CH₄) and global warming potentials in different treatments

根据 CO₂、N₂O 和 CH₄ 增温潜势可知,处理间 产生的综合温室效应存在较大差异(图 1D)。总体而 言,处理间综合温室效应强度表现为 Urea+DCD> Urea>CK>Urea+ATU;单一气体对综合温室效应的贡 献为 CO₂>N₂O>CH₄。Urea 和 Urea+DCD 处理 CO₂、 N₂O 和 CH₄的三者综合温室效应比 CK 处理分别增加 了 588.4 和 1 136.4 μ g/g(以 CO₂ 当量计),增幅分别达 37.7% 和 72.8%,说明单施尿素及尿素与 DCD 配施 能够显著增加旱地土壤温室气体排放的综合温室效 应。而 Urea+ATU 处理中的综合温室效应与 CK 处理 无显著变化,较 Urea 处理降低。CO₂ 排放对 Urea 和 Urea+ATU 处理的综合温室效应贡献分别为 76.7% 和 78.4%, N₂O 排放的贡献分别为 22.5% 和 20.8%。 在 Urea+DCD 处理中,CO₂ 排放对综合温室效应的贡 献高达 92.1%,而 N₂O 仅为 7.3%,与 CK 处理较为

相似。CH₄排放对综合温室效应的贡献在 CK 处理最高,约为1.6%,在其余处理中贡献仅为0.7%~0.8%。

2.2 土壤无机氮转化强度

以一定时间内土壤 NO₃-N 含量的增加量表示土 壤硝化强度。由图 2 可知,与对照相比,单施尿素显 著提高了土壤的硝化强度,DCD 极大程度抑制了土 壤的硝化作用,而 ATU 对硝化强度的影响不显著。

Urea 处理经过 28 d 培养, 尿素水解产生的 NH₄⁺-N 经硝化作用完全转化成了 NO₃⁻-N, 土壤 NO₃⁻-N 含量 增加 122.51 μ g/g, 显著高于 CK 处理(22.06 μ g/g); 其 中, 前 14 d 平均硝化速率为 8.14 μ g/(g d), 后 14 d 平均硝化速率仅为 0.61 μ g/(g d)(图 2C)。CK 处理的 硝化速率均低于 Urea 处理, 分别为 1.38 μ g/(g d)和 0.22 μ g/(g d), 表明非外源氮而是土壤矿化出的 NH₄⁻-N 作为底物促进了土壤的硝化作用。Urea+DCD 处理较 Urea 处理 28 d 内土壤 NO₃-N 含量减少 95.17 µg/g,降幅达 78.7%,较 CK 处理仅增加 5.27 µg/g。 Urea+ATU 处理与 Urea 处理相比,无论是 14 d 还是 28 d 内的土壤 NO₃-N 含量都无显著差异,表明 ATU 对该土壤的硝化强度无显著影响。除了硝化作用受到 强烈抑制的 Urea+DCD 处理中土壤 NH4-N 依然维持 在较高水平(122.66 µg/g),其他处理中土壤 NH4-N 含 量均较低(9.37~11.37 µg/g),且无显著差异。

土壤 NO₃-N 产生速率和 N₂O 积累速率极显著正相 关(r=0.86, P<0.001)。除了 Urea+DCD 处理外,其他处 理前 14 d 的土壤 NO₃-N 和 N₂O 累积速率显著高于后 14 d。而 Urea+DCD 处理虽然在后 14 d NO₃-N 的产生速 率和前 14 d 无显著差异,但 N₂O 累积速率却显著提高。

2.3 土壤细菌、古菌和真菌丰度的变化

荧光定量 PCR 对土壤细菌 16S rRNA 基因、古菌 16S rRNA 基因和真菌 18S rRNA 基因进行定量, 评估 CO₂ 排放相关的主要土壤微生物类群对尿素及 硝化抑制剂的响应。由图 3 可知,同一处理的不同类 型土壤微生物的响应规律并不一致,同一类型微生物 在不同处理间的变化趋势也不尽相同。总体而言,在 各处理中规律趋势一致:细菌丰度>古菌丰度>真菌 丰度;真菌(r=0.751, P<0.001)、细菌(r=0.691, P<0.01) 和古菌(r=0.491, P<0.05)丰度与 CO₂通量变化均显著 正相关(表 2)。 单施尿素培养 28 d 显著刺激了细菌的生长,细菌 16S rRNA 基因丰度由 0 d 时 9.25×10⁹ copies/g 增加到 1.22×10¹⁰ copies/g,增幅达 31.6%,但与 14 d 相比无显著变化。Urea+DCD 处理中细菌丰度亦随培养时间显著增加,尤其后 14 d 增幅最大;与 14 d 时相比,培养 28 d 细菌 16S rRNA 基因丰度增加 58.2%,从 9.96×10⁹ copies/g 增加至 1.58×10¹⁰ copies/g;与 0 d 时相比,增加 70.4%。Urea+ATU 处理的细菌变化趋势与以上两个处理完全相反,培养 28 d 时比 0 d 时减少了 4.01×10⁹ copies/g,降幅达 56.7%。

古菌和真菌在不同处理中变化趋势较为一致,随 培养时间而显著增加,但增幅存在差异。培养 28 d 后,古菌 16S rRNA 基因和真菌 18S rRNA 基因丰度 在 CK 处理中增幅最大,分别由 0 d 时 5.53×10⁷ copies/g和 4.04×10⁶ copies/g增加到 2.21×10⁸ copies/g 和 1.29×10⁷ copies/g; 古菌在 Urea 和 Urea+ATU 处理 中增幅最小; 真菌在 Urea+ATU 处理增幅最小, 且在

Urea 和 Urea+DCD 处理中无显著差异。

图 3 各处理土壤细菌 16S rRNA 基因、古菌 16S rRNA 基因和真菌 18S rRNA 基因数量的变化 Fig. 3 Abundance changes of soil bacterial and archaeal 16S rRNA gene and fungal 18S rRNA gene in different treatments

表 2 土壤微生物特征基因丰度与温室气体 CO₂、CH₄、N₂O 累计排放量以及 NO₃-N 含量的相关分析 Table 2 Correlation between greenhouse gas (CO₂, N₂O and CH₄) cumulative emission, NO₃-N contents and gene abundances of different microbial guilds.

			-			
	细菌	古菌	真菌	AOB	AOA	反硝化细菌
CO ₂	0.691**	0.491^{*}	0.751**	0.168	0.709**	0.735**
CH_4	0.139	0.695**	0.888^{***}	0.037	0.585^*	0.823***
N_2O	0.324	-0.025	0.076	0.884^{***}	0.011	0.178
NO_3^N	-0.183	-0.258	-0.111	0.982^{***}	-0.501^{*}	0.104

注: Pearson 双尾显著性检验, n = 27; *、**、***分别表示相关性达 P<0.05、P<0.01 和 P<0.001 显著水平。

2.4 土壤硝化和反硝化微生物丰度的变化

通过荧光定量 PCR 对土壤氨氧化细菌 amoA 基因、氨氧化古菌 amoA 基因以及反硝化 nirK 基因进行定量,评估 N₂O 排放相关的土壤功能微生物类群 对尿素及硝化抑制剂的响应。由图 4 可知,3 种类型 功能微生物在不同处理中的响应规律有明显差异。总体而言,土壤 NO₃-N 含量变化与 AOB 丰度(r=0.982, P<0.001)极显著正相关,与 AOA 丰度显著负相关(r=-0.501, P<0.05)(表 2)。N₂O 通量变化与 AOB 丰度具极显著相关(r=0.884, P<0.001),与 AOA 和反硝 化细菌丰度无明显相关性(表 2)。

单施尿素刺激了 AOB 的生长,细菌 amoA 基因 丰度随培养时间显著增加,由0d时2.66×10⁷ copies/g 提高到28d时2.32×10⁸ copies/g,增加了7.69倍;其 中,前14d生长最快,14d时细菌 amoA 基因丰度 已经达到28d时的89.4%,与硝化速率的变化较为 一致。Urea+ATU处理中同样检测到大量的AOB生 长,细菌 amoA 基因丰度在14d和28d分别为同时 刻尿素处理的83.2%和90.1%,与硝化过程未受到 明显抑制(图2)较为相符。Urea+DCD处理中细菌 amoA 基因丰度亦呈增加趋势,28d时较0d时增加 了1.36倍。CK处理AOB丰度保持稳定。与0d时 相比,培养28d后,在硝化强度相对较弱的CK和 Urea+DCD处理中,AOA和反硝化细菌的丰度均高 于硝化强度较高的 Urea 和 Urea+ATU 处理,与 AOB 的变化趋势相反,表明 AOB 对供试土壤中高强度的 无机氮转化起主导作用。同时,N₂O 与硝化强度极显 著相关(*r*=0.87, *P*<0.001),表明 AOB 亦主导了该土 壤施氮条件下的 N₂O 排放。AOB 与 AOA、反硝化 细菌以及总细菌的比值(图 4)在 Urea 和 Urea+ATU 处理中均高于 CK 和 Urea+DCD 处理,与硝化强度 以及 N₂O 通量变化趋势较为一致,进一步证明了 AOB 对该施氮土壤中强烈硝化作用以及 N₂O 排放 的重要贡献。

3 讨论

本研究发现该麦田土壤排放的 3 种温室气体 (CO₂、N₂O 和 CH₄)综合温室效应在处理间由强到弱 顺序为 Urea+DCD>Urea>CK>Urea+ATU,表明施肥 措施及硝化抑制剂类型强烈影响单一以及综合温室 气体排放量。较多研究表明在旱地生态系统中土壤温 室气体排放以 CO₂ 和 N₂O 的净排放为主^[26],而在稻 田生态系统中温室气体的交换则是以 CO₂ 的净吸收 以及 CH₄和 N₂O 净排放为主要特点^[27-28]。本研究中 尿素氮肥输入旱地土壤,促进了温室气体排放,使综 合温室效应提高了 37.7%,其中 CO₂的贡献占 76.7%, N₂O 的贡献占 22.5%。相似地,华北平原玉米地土壤 CO₂ 对综合温室效应的贡献高于 N₂O,且 N₂O 的

图 4 各处理土壤细菌 amoA 基因、古菌 amoA 基因和反硝化细菌 nirK 基因丰度的变化以及不同微生物类群 之间的相对比例

Fig. 4 Abundance changes of soil bacterial and archaeal *amoA* gene and denitrifying *nirK* gene in different treatments and relative ratios of different microbial guilds

贡献最高可达 39%^[29]。而在另一种麦田土壤中,虽 CO₂对综合温室效应的贡献高于 N₂O, 但 N₂O 的贡 献仅为 CO₂的 3%^[26]。可见,温室气体之间的相对排 放量在不同旱地土壤中亦存在较大差异。大量研究发 现在旱地土壤中 DCD 对 N₂O 的减排效果较好,在不 同类型(包括小麦、蔬菜、玉米、草地等)旱地土壤中 DCD 对 N₂O 的减排效率达 30% ~ 70%^[30-32]。本研究 中 DCD 添加使 N₂O 降低约 59%, 与以上结果基本符 合。但也有报道表明在酸性土壤中 DCD 对 N₂O 排放 无明显作用^[33]。在本研究中, ATU 添加使 N₂O 排放 量降低约 35%, 而目前未见 ATU 对其他土壤 N₂O 减 排作用的报道。另外,本研究发现 DCD 刺激了土壤 CO2 的排放,说明使用硝化抑制剂减排 N2O 时,不 能忽略其对其他温室气体的影响。但一些文献也报道 了与本研究不同的结果,它们发现 DCD 可能对 CO。 的排放无作用或有抑制作用。这种差异可能与土壤的 性质以及土壤微生物对 DCD 的降解有关^[34]。室内微 宇宙培养法是揭示生态过程潜在微生物机理的有效 方法,在温室气体排放的机理研究中应用广泛[35-37]。 本试验采用室内微宇宙培养法进行培养,监测了不同 时刻温室气体的排放量,虽然定期更新了瓶内空气, 但每周培养瓶内温室气体的累积以及气压变化可能 会对不同温室气体的排放产生影响,未来还需要对原

位条件下两种硝化抑制剂的生态效应做进一步评估。 我们的研究结果反映了硝化抑制剂施用条件下旱地 土壤温室气体排放的一种模式,为硝化抑制剂在实际 生产中的应用以及温室气体减排提供了参考。

尿素作为一种常用化学氮肥,在农业中的使用量 约占化学氮肥总量 50%。尿素进入土壤溶液后迅速水 解NH4,为氨氧化细菌和古菌提供了充足的底物。本 研究发现单施尿素显著提高麦田土壤的硝化强度,促 进了土壤 N₂O 的排放。在培养 14 d 时已将尿素水解 产生 NH⁴ 完全氧化, N₂O 的排放速率与 NO³₃-N 累积 速率极显著正相关(r=0.99, P<0.001), N₂O 的排放系 数($\Delta N_2 O - N / \Delta NO_3^2 - N$)约 0.79%, 符合我国旱地土壤 N₂O的排放系数范围(0.22%~1.13%)^[38]。AOB数量的 增加与 N₂O 和 NO₃-N 积累量极显著正相关(P<0.001), 与以往研究较为一致,表明 AOB 而不是 AOA 是中 性-碱性土壤(pH>5.5)外源高浓度 NH4⁺ 向 NO3 转化及 N₂O 排放的主导驱动者^[6, 39-40]。另外,实验室纯培养时 发现AOB具有较强的细胞水平产N2O能力,Nitrosospira 属 AOB 单位细胞产 N₂O 速率为 2.0 ~ 7.6 amol/h, Nitrosomonas 属 AOB 单位细胞产 N₂O 速率可达 15.5~ 58.0 amol/h^[41]。而本试验条件下,假设单施尿素条件 下 N₂O 全由 AOB 产生,则 AOB 细胞 N₂O 产生速率 平均约为 1.04 amol/h, 与 Nitrosospira 较为接近, 说

明 Nitrosospira 属 AOB 可能是该土壤中主要活性 AOB 类群。值得注意的是,本试验中土壤 AOB 产 N₂O 活性明显低于纯培养条件,表明土壤环境中微生 物的活性受到更加复杂的因素影响。该土壤在不施氮 条件下,AOA 的数量随培养时间显著增加,NO₃-N 的积累与 AOA 呈强烈正相关(r=0.97, P<0.05),表明 AOA 可以利用土壤有机质矿化出的低浓度 NH₄⁺进行 生长^[42]。假设不施氮条件下 N₂O 由 AOA 硝化作用产 生,则 AOA 单位细胞产 N₂O 速率最大可达 0.76 amol/h, 与 AOA 纯菌细胞产 N₂O 速率很大可达 0.76 amol/h, 直接表明 AOA 可能在无外源氮肥输入的自然生态系 统 N₂O 排放中具有重要作用。

DCD 作为氮肥增效剂被广泛用于农业生产,其 对土壤氮转化及硝化微生物的抑制作用已有较多报 道^[34, 43-44],我们的结果与此较为相似。本研究中 DCD 与尿素配施分别使 NO3-N 和 N2O 的积累量减少 71.7% 和 59.3%, AOB 的数量减少 72.9%, 表明 DCD 与尿素配施是减少旱地土壤 N₂O 排放的一项有效措 施^[45]。但与 14 d 相比, 28 d 时 AOB 和 AOA 的丰度 有显著增加,可能是土壤中 DCD 的降解导致其对硝 化微生物的抑制效果减弱。O'Callaghan 等^[34]研究发 现土壤中的 DCD 在 28 d 内降解量可达 20 µg/g,表 明 DCD 在土壤中能够快速降解。同时,细菌和反硝 化细菌在 28 d 时也有显著提高,并促进了 CO₂ 排放。 相似地, 王红霞等^[46]研究也发现当土壤中 DCD 浓度 低于 5 mg/g 时能够促进细菌生长,低于 1 mg/g 时还 同时促进放线菌生长,高于以上浓度则分别对细菌和 放线菌生长表现出抑制作用;但对霉菌则具有普遍抑 制作用。这种现象可能是由于低浓度 DCD 降解刺激 了部分异养微生物的生长,而高浓度 DCD 则可能改 变土壤环境并且对微生物产生毒害。除此之外,马军 伟等^[47]还发现 DCD 能够改变细菌和真菌的群落结 构,并提高细菌和真菌的丰富度和多样性。

在液体培养基中 ATU浓度小于 100 μmol/L 即能 对 AOB 生长活性产生强烈或完全抑制^[48-49]。本研究 ATU 的施用量为 15 μg/g,在土壤溶液中浓度约为 118 μmol/L,未能显著降低土壤 NO₃-N 的产生速率, 对 AOB 的抑制作用较为微弱,跟预先假设不一致。 类似地,在冰岛草地土壤中 100 μmol/L ATU 亦未对 AOB 和 AOA 生长表现出明显抑制或促进作用^[50]。但 也有研究发现在其他农田或草地土壤中 100 μmol/L ATU 可以部分抑制硝化作用,并降低 AOB 的生长活 性^[51-53]。这种抑制效果的差异可能与土壤类型、土 壤的非匀质结构、土壤氨氧化微生物的组成以及其 他微生物对抑制剂的降解等有关。本试验中 AOA 丰度对 ATU 未有明显响应,与大多数报道一致。 AOA 对 ATU 浓度不敏感,所需有效抑制浓度可能是 AOB 的1000倍^[49]。甚至有些学者还发现低浓度 ATU (100~1000 ng/g)对 AOA 生长具有促进作用^[12]。因 此, ATU 对土壤中 AOB 和 AOA 的有效抑制浓度以 及对不同土壤类型中氮素转化过程的影响尚需进一 步验证。另外,我们还发现 ATU 降低了细菌和真菌 的丰度,表明细菌和真菌的某些类群对 ATU 较为敏 感。一些研究表明硫脲类化合物对多种代表性植物病 原菌、病毒等具有强烈的抑制作用^[54]。然而目前尚 不清楚 ATU 是否会对土壤中的有益微生物产生影 响,以及 ATU 在生态系统食物链中传递是否会带来 生态环境健康风险。因此,虽然 ATU 施用显著降低 了综合温室效应,但目前不推荐 ATU 在农业生态系 统中被广泛应用。未来需要结合"土壤-微生物-植物" 系统以对 ATU 的生态效应和生物机理做更加全面的 评估和阐释。

4 结论

AOB 主导了施氮麦田土壤 NH4-N 向 NO3-N 的 转化以及 N2O 排放。单施尿素以及与硝化抑制剂 (DCD 和 ATU)配施对麦田土壤温室气体排放及微生 物群落的影响存在较大差异。单施尿素促进了 AOB 的迅速繁殖,极大地增加了 N2O 排放总量,同时促 进了细菌生长及 CO2 排放,提高了综合温室效应。 DCD 施用极大程度抑制了 AOB 的生长,显著降低了 N2O 排放,但促进了细菌群落的生长,从而提高了 CO2 排放总量,并显著提高了综合温室效应。而 ATU 施用对 AOB 的生长有轻微抑制作用,对反硝化细菌 的生长有轻微促进作用,但对 AOA 丰度影响不显著, 显著降低了 CO2 和 N2O 排放,降低了综合温室效应。 与对照相比,尿素及与硝化抑制剂配施均显著降低 了 CH4 的排放量,但 CH4 对综合温室效应的贡献 (<1.65%)远远低于 CO2 和 N2O。

参考文献:

- [1] 朱兆良. 氮素管理与粮食生产和环境[J]. 土壤学报, 2002, 39: 1-10.
- [2] Shen J P, Zhang L M, Di H J, et al. A review of ammoniaoxidizing bacteria and Archaea in Chinese soils[J]. Frontiers in Microbiology, 2012, 3: 296.
- [3] 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1): 406-415.
- [4] Prosser J I, Hink L, Gubry-Rangin C, et al. Nitrous oxide production by ammonia oxidizers: Physiological diversity,

壤

niche differentiation and potential mitigation strategies[J]. Global Change Biology, 2020, 26(1): 103–118.

- [5] Lu L, Jia Z J. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology, 2013, 15(6): 1795–1809.
- [6] Xia W W, Zhang C X, Zeng X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7): 1226–1236.
- [7] Cantarel A A M, Bloor J M G, Pommier T, et al. Four years of experimental climate change modifies the microbial drivers of N₂O fluxes in an upland grassland ecosystem[J]. Global Change Biology, 2012, 18(8): 2520–2531.
- [8] Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing Archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 2012, 6(5): 1032–1045.
- [9] Di H J, Cameron K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland[J]. Soil Use and Management, 2006, 18(4): 395– 403.
- [10] Dai Y, Di H J, Cameron K C, et al. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N₂O emissions in a grazed pasture soil[J]. Science of the Total Environment, 2013, 465: 125–135.
- [11] Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook[J]. Communications in Soil Science and Plant Analysis, 1989, 20(19/20): 1933–1955.
- [12] Lehtovirta-Morley L E, Verhamme D T, Nicol G W, et al. Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil[J]. Soil Biology and Biochemistry, 2013, 62: 129–133.
- [13] He X J, Ji G D. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil[J]. Environmental Science and Pollution Research, 2020, 27(13): 15233– 15244.
- [14] Srithep P, Pornkulwat P, Limpiyakorn T. Contribution of ammonia-oxidizing Archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors[J]. Environmental Science and Pollution Research, 2018, 25(9): 8676– 8687.
- [15] FAOSTAT. Food and agriculture organization of the united nations[OL]. Http://faostat.Fao.Org/site/567/default.Aspx# ancor. 2014.
- [16] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing//Solomon S, Qin D, Manning M, et al. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. New York: Cambridge University Press, 2007.
- [17] 杨剑波,李学超,徐晶晶,等.两种硝化抑制剂在不同 土壤中的效果比较[J].土壤,2014,46(2):319–324.

- [18] 张昊青,赵学强,张玲玉,等.石灰和双氰胺对红壤酸 化和硝化作用的影响及其机制[J].土壤学报,2021,58(1): 169–179.
- [19] IPCC. Climate change 2013: The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[R]. New York: Cambridge University Press, 2013.
- [20] Lane D J. 16S/23S rRNA sequencing//Stackebrandt E, Goodfellow M. Nucleic acid techniques in bacterial systematics[M]. New York: John Wiley and Sons, 1991: 115–175.
- [21] Ochsenreiter T, Selezi D, Quaiser A, et al. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR[J]. Environmental Microbiology, 2003, 5(9): 787–797.
- [22] Vainio E J, Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA[J]. Mycological Research, 2000, 104(8): 927–936.
- [23] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene *AmoA* as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712.
- [24] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683–14688.
- [25] Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10): 3769–3775.
- [26] 郭树芳,齐玉春,罗小玲,等. 滴灌对干旱区春小麦田 土壤 CO₂、N₂O 排放及综合增温潜势的影响[J]. 农业环 境科学学报, 2016, 35(4): 792-800.
- [27] 纪洋,于海洋,徐华. 控释肥与尿素配合施用对稻季土 壤 CH₄和N₂O 排放的影响[J]. 生态环境学报, 2017, 26(9): 1494–1500.
- [28] 展茗,曹凑贵,汪金平,等.复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报,2008,28(11): 5461-5468.
- [29] 夏文斌, 张旭辉, 刘铭龙, 等. 麦秆还田方式对旱地土 壤综合温室效应的影响[J]. 土壤, 2014, 46(6): 1010–1016.
- [30] Qiu W H, Di H J, Cameron K C, et al. Nitrous oxide emissions from animal urine as affected by season and a nitrification inhibitor dicyandiamide[J]. Journal of Soils and Sediments, 2010, 10(7): 1229–1235.
- [31] Ruser R, Schulz R. The effect of nitrification inhibitors on the nitrous oxide (N₂O) release from agricultural soils-a review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(2): 171–188.
- [32] 戴宇,贺纪正,沈菊培.双氰胺在农业生态系统中的应用效果及其影响因素[J].应用生态学报,2014,25(1):279–286.

- [33] 王海飞, 贾兴永, 高兵, 等. 不同土地利用方式土壤温 室气体排放对碳氮添加的响应[J]. 土壤学报, 2013, 50(6): 1172-1182.
- [34] O'Callaghan M, Gerard E M, Carter P E, et al. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine[J]. Soil Biology and Biochemistry, 2010, 42(9): 1425–1436.
- [35] Hink L, Nicol G W, Prosser J I. Archaea produce lower yields of N₂ O than bacteria during aerobic ammonia oxidation in soil[J]. Environmental Microbiology, 2017, 19(12): 4829– 4837.
- [36] Lin Y X, Ding W X, Liu D Y, et al. Wheat straw-derived biochar amendment stimulated N₂O emissions from rice paddy soils by regulating the *AmoA* genes of ammoniaoxidizing bacteria[J]. Soil Biology and Biochemistry, 2017, 113: 89–98.
- [37] Zhang X, Duan P P, Wu Z, et al. Aged biochar stimulated ammonia-oxidizing Archaea and bacteria-derived N₂O and NO production in an acidic vegetable soil[J]. Science of the Total Environment, 2019, 687: 433–440.
- [38] 徐玉秀, 郭李萍, 谢立勇, 等. 中国主要旱地农田 N₂O 背景排放量及排放系数特点[J]. 中国农业科学, 2016, 49(9): 1729–1743.
- [39] Meinhardt K A, Stopnisek N, Pannu M W, et al. Ammoniaoxidizing bacteria are the primary N₂ O producers in an ammonia-oxidizing Archaea dominated alkaline agricultural soil[J]. Environmental Microbiology, 2018, 20(6): 2195– 2206.
- [40] Zhao J, Wang B Z, Jia Z J. Phylogenetically distinct phylotypes modulate nitrification in a paddy soil[J]. Applied and Environmental Microbiology, 2015, 81(9): 3218–3227.
- [41] Shaw L J, Nicol G W, Smith Z, et al. *Nitrosospira* spp. can produce nitrous oxide via a nitrifier denitrification pathway[J]. Environmental Microbiology, 2006, 8(2): 214–222.
- [42] Hink L, Gubry-Rangin C, Nicol G W, et al. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions[J]. The ISME Journal, 2018, 12(4): 1084–1093.
- [43] Monaghan R M, Smith L C, de Klein C A M. The effectiveness of the nitrification inhibitor dicyandiamide (DCD) in reducing nitrate leaching and nitrous oxide emissions from a grazed winter forage crop in southern

New Zealand[J]. Agriculture, Ecosystems & Environment, 2013, 175: 29–38.

- [44] 伍延正,张苗苗,秦红灵,等.双氰胺对冬闲稻田和油菜地 N₂O 排放的影响[J].环境科学,2017,38(5):2084–2092.
- [45] 邱炜红, 刘金山, 胡承孝, 等. 硝化抑制剂双氰胺对菜 地土壤 N₂O 排放的影响[J]. 环境科学, 2011, 32(11): 3188–3192.
- [46] 王洪霞, 孙庆元. 双氰胺对土壤微生物种群数量的影响[J]. 安徽农业科学, 2006, 34(1): 113-114.
- [47] 马军伟,孙万春,胡庆发,等. 氰胺类肥料对连作土壤 微生物种群结构的影响[J]. 浙江大学学报(农业与生命 科学版), 2013, 39(3): 281-290.
- [48] Ginestet P, Audic J M, Urbain V V, et al. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide[J]. Applied and Environmental Microbiology, 1998, 64(6): 2266–2268.
- [49] Shen T L, Stieglmeier M, Dai J L, et al. Responses of the terrestrial ammonia-oxidizing archaeon Ca. *Nitrososphaera viennensis* and the ammonia-oxidizing bacterium *Nitrosospira* multiformis to nitrification inhibitors[J]. FEMS Microbiology Letters, 2013, 344(2): 121–129.
- [50] Daebeler A, Bodelier P L E, Hefting M M, et al. Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil[J]. FEMS Microbiology Ecology, 2015, 91(3): fiv014.
- [51] Taylor A E, Vajrala N, Giguere A T, et al. Use of aliphaticnalkynes to discriminate soil nitrification activities of ammoniaoxidizing thaumarchaea and bacteria[J]. Applied and Environmental Microbiology, 2013, 79(21): 6544–6551.
- [52] Taylor A E, Zeglin L H, Dooley S, et al. Evidence for different contributions of Archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils[J]. Applied and Environmental Microbiology, 2010, 76(23): 7691–7698.
- [53] 刘天琳,任佳琪,王天佑,等.中性紫色水稻土硝化作 用中细菌和古菌的相对贡献[J].土壤通报,2018,49(5): 1091-1096.
- [54] 张志国, 唐越, 王敏, 等. 新结构硫脲类化合物的合成、 鉴定及抑菌活性评价(英文)[J]. 微生物学通报, 2017, 44(6): 1437–1443.