DOI: 10.13758/j.cnki.tr.2023.01.009

周聪, 饶旭东, 薛梦琪, 等. 围垦年限及施氮对滨海湿地 CH4 好氧氧化过程的影响. 土壤, 2023, 55(1): 72-78.

围垦年限及施氮对滨海湿地 CH_4 好氧氧化过程的影响^①

周 聪^{1,2},饶旭东^{1,2},薛梦琪^{1,2},张耀鸿^{1*},高霄鹏³,贾仲君²

(1 南京信息工程大学气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室,南京 210044;2 土壤与农业可持续发展国家重 点实验室(中国科学院南京土壤研究所),南京 210008;3 加拿大曼尼托巴大学土壤科学系,温尼伯 R3T2N2)

摘 要:本试验选取崇明东滩的光滩湿地和芦苇湿地为对照,比较研究不同围垦年限(19、27、51、86 a)的围垦区稻田耕层土壤 CH4 好氧氧化的速率和固碳量以及对氮肥的响应特征。结果表明,围垦稻田土壤有机碳(SOC)含量随围垦年限增长而显著增加,而湿地 土壤的酸碱度(pH)、硫酸根离子(SO₄²⁻)浓度和电导率(EC 值)则均随围垦年限增长而呈逐渐下降趋势。围垦稻田的 CH4 好氧氧化速率 存在显著差异,其中围垦 27 a 稻田最高,为 32 µg/(g·d),但远低于芦苇湿地(82 µg/(g·d))。CH4 好氧氧化驱动的固碳净增量(¹³C-SOC) 介于 10.3~19.6 µmol/g,与 CH4氧化速率显著正相关。围垦 86 a 稻田 CH4 好氧氧化的固碳效率(¹³C-SOC 净增量/¹³CH4 转化量)为 61%, 显著高于围垦 19 a 和 27 a 稻田。添加 3 种氮肥(NH⁴₄-N, NO³₃-N, Urea)均显著提高了围垦稻田土壤的 CH4 好氧氧化速率,尤其以 NH⁴₄-N 最为明显。相反,3 种氮肥对围垦稻田土壤的 ¹³C-SOC 净增量没有明显影响,导致其 CH4氧化的固碳效率减小。综上,滨海 稻田的 CH4 好氧氧化速率与围垦年限并无显著正相关,但围垦年限长的稻田中 CH4 氧化的固碳效率较高;施加氮肥可显著提高围 垦稻田土壤的 CH4 好氧氧化速率。

关键词:甲烷氧化;围垦;滨海稻田;固碳量;固碳效率;氮响应 中图分类号: S154.1 文献标志码: A

Effects of Reclamation Year and Nitrogen Application on Aerobic Methane Oxidation Potential in Coastal Wetlands

ZHOU Cong^{1, 2}, RAO Xudong^{1, 2}, XUE Mengqi^{1, 2}, ZHANG Yaohong^{1*}, GAO Xiaopeng³, JIA Zhongjun²

(1 Collaborative Innovation Center for Forecast and Evaluation of Meteorological Disasters/Jiangsu Provincial Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 State Key Laboratory of Soil and Sustainable Agriculture, Institute of SoilcScience, Chinese Academy of Sciences, Nanjing 210008, China; 3 Department of Soil Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada)

Abstract: In this study, the Chongming Dongtan Natural Wetland in the Yangtze River estuary was selected as the control, and aerobic CH₄ oxidation rate and related carbon sequestration characteristics were investigated in paddy field soils under different reclaimed years (19, 27, 51 and 86 a). The results show that soil organic carbon (SOC) content in reclaimed paddy fields is increased significantly with the increase of reclaimed year, whereas pH, EC, and SO₄²⁻ concentration of soils are gradually decreased. There is significant difference in aerobic CH₄ oxidation rates of soils under different reclaimed years, and the highest value is found in the 27 a reclaimed paddy field (32 μ g/(g·d)). However, all of aerobic CH₄ oxidation rates are much lower in the reclaimed rice fields than that in the reed wetland (82 μ g/(g·d)). The net increment of carbon sequestration (¹³C-SOC) driven by aerobic CH₄ oxidation is 10.3–19.6 μ mol/g, significantly positively correlated with CH₄ oxidation rate. Carbon sequestration efficiency (net increment of ¹³C-SOC/¹³CH₄ conversion) of aerobic CH₄ oxidation is 61% in the reclaimed 86 a paddy fields, significantly higher than that in the 19 a and 27 a reclaimed paddy fields. The addition of N fertilizers (NH₄⁺-N, NO₃⁻-N, Urea) can significantly increase aerobic CH₄ oxidation rates in the reclaimed paddy soils, especially for NH₄⁺-N. On the contrary, N additions have no significant effect on the net increment of ¹³C-SOC in the reclaimed paddy soils, resulting in the reduction of carbon sequestration efficiency of aerobic CH₄ oxidation. In conclusion, reclaimed year does not significantly influence aerobic

①基金项目:国家自然科学基金项目(42175138,91751204)和江苏省研究生科研创新计划项目(KYCX22_1222)资助。

^{*} 通讯作者(yhzhang@nuist.edu.cn)

作者简介:周聪(1995—),女,江苏南京人,硕士研究生,主要研究方向为碳氮循环与全球变化。E-mail: 1870581675@qq.com

 CH_4 oxidation rate in coastal wetlands but increases carbon sequestration efficiency of aerobic CH_4 oxidation, N fertilizer can significantly improve aerobic CH_4 oxidation rate in reclaimed paddy fields.

Key words: Methane oxidation; Reclamation; Coastal paddy field; Carbon sequestration; Carbon sequestration efficiency; Nitrogen response

CH₄是大气中仅次于 CO₂的第二大温室气体,对 全球变暖的贡献率约占 25%^[1],在百年尺度上其增温 潜势是 CO₂的 20 倍 ~ 30 倍^[2]。大气中 CH₄主要来自 人类生产活动和自然生态系统释放^[3]。全球综合观测 资料显示,自工业革命以来大气中 CH₄浓度以每年 1.2% 的速度持续增长。稻田是陆地生态系统中重要 的 CH₄排放源^[4],其产生的 CH₄气体分子在进入大气 之前大部分被氧化为 CO₂。其中,以好氧 CH₄氧化 作用最为重要,该过程由好氧 CH₄氧化菌在 O₂参与 下完成。因此研究稻田 CH₄氧化过程对揭示湿地 CH₄ 排放的关键过程机理以及探索行之有效的 CH₄减排 措施至关重要。

滨海湿地是海洋生态系统与陆地生态系统之间 重要的生态过渡带和缓冲带^[5-6]。在沿海城市发展、 人口密度不断增加的背景下,将滨海湿地围垦后改 造为农田成为解决沿海地区土地短缺问题的重要方 式^[7-9]。崇明东滩位于长江口崇明岛的最东端,是长 江口规模最大、发育最完善的河口型潮汐滩涂湿地, 新中国成立以来经过多次围垦工程,形成了不同围垦 年限的稻田^[10]。围垦区的土壤主要来自于河流淤泥 的泥沙,本底相对单一。不同围垦年限的围垦区土壤, 代表了滨海滩涂沉积物逐渐熟土化为农田土壤的不 同时期。在此自然条件下,土壤发育的空间变化可以 替代时间尺度上的变化。同时,在此围垦工程中,围 垦区湿地大多被开发改造为稻田,在水稻生产中化学 肥料的施用会加速该熟土化进程。因此,这种以围垦 年限和施肥为主要特征的围垦造田工程对滨海湿地 碳氮转化和循环过程会产生重要影响[11-16]。研究围垦 后种植水稻的滨海稻田 CH₄ 好氧氧化速率的变化规 律,对探索滨海湿地 CH4 好氧氧化作用的演变特征 及其对外源氮输入的响应特性具有重要的科学意义。

据此,本试验以长江口崇明东滩自然湿地和毗邻的围垦区稻田为研究对象,以空间替代时间尺度变化的方法,研究不同围垦年限土壤 CH4 好氧氧化过程的空间变异特征,分析其在滩涂湿地逐渐转变为稻田的熟土化进程中 CH4 好氧氧化作用的演变规律。采用¹³CH4稳定性同位素示踪法,研究 CH4 好氧氧化过程中 ¹³C-CH4 被同化转变为 ¹³C-SOC 的数量特征,阐明其 ¹³C-CH4 的碳分配及其固碳效率,揭示其对外源

氮肥的响应特征。本试验可为合理评估该区域围垦工 程的生态效应,以及为探索稻田温室气体减排措施提 供理论依据。

1 材料与方法

1.1 土壤样品采集

供试土壤采集于上海市崇明岛东滩保护区湿地和毗邻围垦区稻田(31°27′N ~ 31°51′N, 121°09′E ~ 121°54′E),该地区属于亚热带季风气候,年均气温15.3 ℃,年均降水量1004 mm。本研究选取东滩湿地保护区内的低滩位光滩湿地和高滩位芦苇湿地,分别记作 GT 和 LW。在围垦区选取围垦19、27、51、86 a 的稻田作为不同围垦年限的稻田样点^[17],分别记作 WK19、WK27、WK51、WK86。采样时,先选取50 m×50 m 的采样区,然后在每个样区以"S"形走线设置6个样点,每个点间隔10~15 m,然后用土钻取 0~10 cm 鲜土,将该6个点的土壤均匀混合成1个混合样本,重复3次。将土样装入密封袋,放入加冰袋的保温箱迅速运回实验室4℃保存。

1.2 土壤理化性质测定

将采集的土样进行理化性质分析测定。主要理化 指标包括:土壤有机碳(SOC)、土壤全氮(TN)、NH⁺₄-N、 NO⁻₃-N、pH、土壤电导率(EC)和土壤硫酸根(SO²₄)。 土壤有机碳采用浓硫酸--重铬酸钾消煮,硫酸亚铁滴 定法测定;土壤全氮采用凯氏定氮法测定。土壤 NH⁺₄-N和NO⁻₃-N含量采用2mol/LKCl溶液浸提, AA3流动分析仪测定;pH采用数字酸度计测定,水 土比2.5:1(V:m)。土壤电导率以水土比5:1(V:m)浸提后用电导率仪测定;土壤SO²⁻含量使用离子 色谱法测定。

1.3 土壤 CH4氧化速率及固碳特征分析

本试验取上述 6 个湿地土壤,设置 4 个处理,分 别为添加 3 种不同形态外源氮: ①NH₄⁺-N; ②NO₃⁻-N; ③Urea; 以及不添加 N(CK)的处理,每个处理重复 3 次。具体操作为:称取 2.000 g 鲜土放入 12 mL 的 Labco 顶空瓶,加入 2 mL 去离子水后盖好盖子,充 分摇晃 30 s 成均匀泥浆, 25 ℃ 培养箱中预培养 1 d。 然后抽真空-充氩气重复 3 次,再用注射器置换顶空 气体 4 mL 高纯 O₂和 1 mL ¹³CH₄ (¹³C 丰度为 99%),

壤

初始 CH4浓度约为 12%; 再分别加入 20 µL 上述氮 溶液,使培养瓶内N浓度为5mmol。充分摇晃形成 均匀泥浆以达到气-液相平衡。分别在第0、2、5、9、 13 天抽取 100 µL 顶空气体, 用气相色谱仪(Agilent 7890B)测定 CH₄ 浓度。每次采气完要补充等体积的 氩气以保持瓶内体积不变。根据 CH4 浓度随时间变 化最快的时间段来计算 CH₄ 氧化速率(R)。在此计算 过程中要扣减采气产生的 CH₄ 损耗量从而得到实际 的土壤 CH₄氧化量。

$$R = (C_0 - C_t) \times V \times \rho/(t \times m)$$
⁽¹⁾

式中: C_0 为零时刻顶空气体中的 CH₄ 浓度(μ L/L); C_t 为培养 t 时刻后的 CH₄ 浓度(μ L/L); V 为培养瓶体 积(L); ρ 为标准状态下 CH₄ 密度(g/L); t 为培养时间 (d); *m*为土壤干土质量(g)。

培养结束后,瓶内加入2 mol/L 的 HCl 溶液进行 土壤酸化处理(去除无机碳),进行冷冻干燥;磨碎过 2 mm 土筛,测定土壤有机碳含量,之后利用同位素 质谱仪(Isoprime100, Elementar, Germany)测定土壤 有机碳的¹³C 丰度值(¹³C-SOC)。

1.4 数据处理与分析

试验数据采用 Excel 2019 进行整理汇总, 使用

Origin 2018 进行绘图,采用 SPSS 22.0 进行方差分析 (ANOVA, LSD 检验)及相关性分析(Person)。

结果与分析 2

2.1 湿地土壤的理化性质

不同湿地土壤的理化性质见表 1。自然湿地土壤 中芦苇湿地的 SOC 含量显著高于光滩湿地。围垦稻 田土壤的 SOC 含量随着围垦年限的增加而显著增 加。LW湿地的TN含量显著高于GT、WK19、WK27 和 WK51, 而与 WK86 稻田无显著差异。NH₄-N 和 NO₃-N 含量均表现为 LW 湿地显著高于 GT。在围垦 稻田中,WK51稻田的NH4-N和NO3-N含量为最高, 而 WK19 土壤则显著低于其他稻田。自然湿地土壤 pH显著高于围垦稻田,GT土壤显著高于LW土壤, 而围垦稻田土壤则随围垦年限增加 pH 下降。自然湿 地 GT 土壤的 EC 值显著高于 LW 土壤, 围垦后 EC 值显著降低 62%~85%,且随围垦年限增加而显著降 低。GT和LW土壤的SO4-含量随围垦年限增加而降 低;相对于自然湿地土壤,围垦土壤 SO₄²⁻显著下降 $43\% \sim 75\%$

Table 1 Physicochemical properties of soils with different reclaimed years							
米杆点	SOC	IN	NH_4 -N	NO ₃ -N	рн	EC	SO_4^-
	(g/kg)	(g/kg)	(mg/kg)	(mg/kg)		(mS/cm)	(mg/kg)
GT	$7.95\pm0.46~f$	0.86 ± 0.09 bc	6.38 ± 0.35 c	6.39 ± 0.45 e	7.86 ± 0.08 a	5.07 ± 0.15 a	797 ± 23.9 a
LW	$13.5 \pm 0.21 \ d$	1.20 ± 0.03 a	$15.8 \pm 1.13 \text{ b}$	$10.8\pm0.79~c$	$7.67\pm0.02~b$	$4.80\pm0.18\ b$	578 ± 16.8 b
WK19	$9.55 \pm 1.34 \text{ e}$	$0.77\pm0.15\ c$	$5.46 \pm 0.91 \text{ c}$	$8.86 \pm 1.07 \text{ d}$	$7.44\pm0.04~c$	1.84 ± 0.16 c	$328 \pm 26.1 \text{ c}$
WK27	$15.3\pm0.06\ c$	$1.00\pm0.06\ b$	$14.5\pm0.79~b$	$11.8\pm0.70~c$	$7.38\pm0.11~c$	$1.59 \pm 0.03 \text{ d}$	300 ± 35.5 c
WK51	$16.9\pm0.42~b$	$0.84\pm0.03~c$	23.4 ± 2.37 a	18.7 ± 0.66 a	$7.32\pm0.06\ cd$	$1.31 \pm 0.03 \text{ e}$	$226\pm20.6~d$
WK86	$18.3\pm0.02\ a$	1.12 ± 0.04 a	$16.3\pm0.91~b$	$14.1\pm0.55~b$	$7.25 \pm 0.07 \text{ d}$	$0.74\pm0.06~f$	$196 \pm 18.7 \text{ d}$

注: 同列数据小写字母不同表示不同土壤间差异显著(P<0.05)。

2.2 湿地土壤的 CH₄ 好氧氧化速率

无氮添加下可以反映湿地土壤的本底CH4浓度变 化情况。在培养期内,自然湿地土壤和围垦稻田土壤 CH4浓度均呈下降趋势(图 1)。总体来看,各土壤在培 养至第2天后 CH₄浓度明显变化,其中 LW 土壤 CH₄ 浓度变化幅度最大,在培养第9天CH4几乎全部耗尽。

根据 CH₄浓度变化计算出 CH₄ 好氧氧化速率 (图 2)。可以看到, LW 土壤的 CH₄ 氧化速率为 82 μg/(g·d), 是 GT 湿地的 4.2 倍和围垦稻田土壤的 2.6 倍~4.8 倍。在围垦稻田土壤中,不同围垦年限 土壤存在显著差异,其中 WK27 土壤 CH4 氧化速率 最大,为32µg/(g·d),WK19土壤最小,为18µg/(g·d)。 将 CH₄ 好氧氧化速率与土壤理化性质进行相关性分 析,发现 CH₄好氧氧化速率与土壤 TN 含量呈显著正 相关,而与土壤 NH_4^+-N 、 NO_3^--N 、 SO_4^{2-} 等含量呈正 相关但未达到显著水平。

2.3 土壤有机碳的¹³C 丰度值与¹³C-SOC 净增量

培养结束后测得土壤有机碳的 ¹³C 原子百分比 (¹³C-SOC 丰度),结果如图 3。6个湿地土壤的 ¹³C-SOC 丰度值分别为 3.14%、3.22%、3.16%、3.22%、3.33% 和 3.42%, 均高于碳元素的自然丰度(1.08%), 说明 部分¹³CH4底物经过CH4好氧氧化同化进入到土壤有 机碳中。不同湿地土壤之间存在显著差异,其中 LW 湿地显著高于 GT 湿地而与 WK27 稻田无显著差异;

围垦稻田土壤¹³C-SOC 丰度随着围垦年限增加而显 著提高。

由 ¹³C-SOC 丰度和 SOC 含量可计算出土壤 ¹³C-SOC 净增量(图 4),可反映整个培养期内 ¹³CH₄ 通过甲烷好氧氧化同化为土壤有机碳的 ¹³C 净增量。

Fig.1 Changes of soil CH₄ concentration with different reclaimed years

Fig. 3 ¹³C-SOC percentages of soils with different reclaimed years

将 CH₄氧化过程中的 ¹³C-SOC 净增量与 ¹³CH₄ 净消耗量相比,可以反映出稻田土壤 CH₄ 好氧氧化 过程的固碳效率(¹³C-SOC 净增量/¹³CH₄ 总转化量)。 本试验发现,芦苇湿地 CH₄ 好氧氧化的固碳效率为 71%,显著高于围垦稻田。围垦稻田中,WK51 和 WK86 稻田 CH₄ 好氧氧化的固碳效率为 60%~61%, 显著高于 WK19 和 WK27 稻田(均为 47%)。这表明长 期围垦植稻可能有利于 CH₄ 好氧氧化过程中较多的 CH₄ 碳源被固定到土壤中,促进了土壤有机碳的累 积。相关性分析表明,供试土壤 CH₄ 好氧氧化速率 从图中可以看出在自然湿地土壤中,LW 湿地的 ¹³C-SOC 净增量为 20 μmol/g,是GT 土壤的 1.4 倍。 围垦稻田土壤的 ¹³C-SOC 净增量存在显著差异。其 中,WK51 稻田的 ¹³C-SOC 净增量最大,为 15 μmol/g, 而 WK19 稻田最小,为 10 μmol/g。

图 4 不同围垦年限土壤的 ¹³C-SOC 净增量 Fig. 4 ¹³C-SOC net increments of soils with different reclaimed years

与¹³C-SOC 净增量呈显著正相关,与固碳效率呈正 相关,但未达到显著水平,这意味着 CH₄ 氧化速率 越大,¹³C-CH₄碳被固定到土壤中数量也越多。

2.4 CH₄好氧氧化速率对氮输入的响应

添加 3 种外源氮条件下测定湿地土壤 CH₄ 好氧 氧化速率的变化(图 5),可探索在围垦种稻熟土化过 程中滨海湿地对农业氮肥施用的响应特征。在 NH⁺₄-N 处理下,土壤 CH₄氧化速率范围为 46~83 µg/(g·d), LW 土壤显著高于其他土壤;围垦稻田土壤中,WK27 土壤 CH₄氧化速率为 74 µg/(g·d),比其他稻田土壤高 土 壤

出 16% ~ 59%。添加 NO₃-N 处理下, CH₄氧化速率 范围为 41 ~ 83 µg/(g·d), LW 土壤比其他土壤显著高 51% ~ 103%;在围垦稻田土壤中,WK27 稻田最大 为 55 µg/(g·d),显著高于其他稻田,而 WK51 与 WK86 稻田最低。添加 Urea 处理下, CH₄氧化速率范围为 43 ~ 82 µg/(g·d),其中 LW 湿地为 82 µg/(g·d),同样 显著高于其他土壤,比 GT 湿地高出 52%,是围垦稻 田土壤的 1.6 倍;而在围垦稻田土壤中,WK27 与 WK51 稻田的 CH₄氧化速率最高,WK86 稻田最低。

综合来看,氮添加条件下,WK19、WK27、WK51 和WK86的CH4氧化速率增幅分别为177%~274%、 72%~131%、52%~122%、100%~118%,可见氮添 加对围垦稻田土壤的CH4氧化速率具有明显的促进 作用,其中NH⁺₄-N的促进效应最为明显,WK19稻 田的响应度最大。

2.5 ¹³C-SOC 净增量对氮输入的响应

氮输入条件下,湿地土壤¹³C-SOC 净增量的变 化如图 6。其中,NH⁺₄-N 处理下,LW 湿地¹³C-SOC 净增量显著高于其他土壤;在围垦稻田土壤中, WK19、WK27、WK51 稻田¹³C-SOC 净增量随围垦 年限增加显著增加,而WK86 稻田则显著低于其他 土壤。NO₃-N处理下,土壤¹³C-SOC净增量范围为 12~20 μmol/g,LW湿地与WK51稻田显著高于其 他土壤,而WK19、WK27和WK51稻田的¹³C-SOC 净增量随围垦年限增加显著增加。添加Urea处理 下,LW湿地¹³C-SOC净增量为20 μmol/g,比其他 土壤高出24%~76%;GT湿地与WK27、WK51和 WK86稻田之间无显著差异;而WK19稻田为11 μmol/g,显著低于其他土壤。相关性分析表明 ¹³C-SOC净增量与土壤CH4好氧氧化速率虽呈正相 关,但未达到显著水平。可能是由于围垦稻田的CH4 好氧氧化速率对外源氮的响应度高,而芦苇湿地的 响应度很低。

综合来看,氮添加条件下,围垦稻田的¹³C-SOC 净增量范围介于 10 ~ 15 μmol/g(NO₃-N 处理下的 WK51 稻田除外),与无氮添加条件下稻田的净增量 没有明显差异。这表明施加化学氮肥可能对所试滨海 湿地 CH₄氧化驱动的固碳量作用不大。本试验还发 现,添加 3 种氮条件下,围垦稻田 CH₄好氧氧化的 固碳效率(36% ~ 49%)明显低于无氮添加稻田(47% ~ 61%),说明施加氮肥可能会降低围垦稻田土壤 CH₄ 氧化驱动的固碳效率。

3 讨论

CH4 好氧氧化作用主要由好氧 CH4 氧化菌驱动 进行,以 CH₄ 为唯一碳源,利用 O₂ 将 CH₄ 氧化成 CO₂。CH₄好氧氧化过程的碳源流向有两个:一方面 CH₄碳源被同化到微生物中,提高了土壤微生物生物 量碳含量;另一方面微生物好氧呼吸代谢将其异化为 CO₂。本试验中将土壤的¹³C-SOC 净增量与¹³CH₄净 消耗量相比,发现无氮添加条件下的围垦稻田 CH4 好氧氧化的固碳效率为 47% ~ 61%。Trimmer 等^[18] 发现英国 Chalk 河流沉积物的 CH₄ 好氧氧化的平均固 碳效率约为50%,本试验结果与此基本一致。也有报 道发现,在 CH₄浓度较高的覆盖土中 CH₄ 好氧氧化 的固碳效率可达 69%, 而在 CH₄浓度较低的森林土 壤中其固碳效率只有 31%~43%^[19]。从功能菌代谢途 径来看,以磷酸核酮糖途径进行碳代谢的Ⅱ型 CH₄ 好氧菌将更多的 C-CH₄ 转移到微生物体内,显著高 于以丝氨酸途径的 I 型 CH₄ 好氧菌的固碳效率^[20]。 因此, CH₄好氧氧化过程不仅可以将 CH₄转化为增温 潜势较小的 CO2 气体, 更重要的是可以将一半左右 的甲烷碳源同化进入土壤微生物中,促进了土壤有机 碳累积。

高浓度 CH4 底物培养可以反映出土壤的 CH4 消 耗潜力。本试验结果表明, 芦苇湿地土壤 CH₄ 氧化 速率(82 µg/(g·d))显著高于光滩湿地,这可能与芦苇 生长有关。芦苇湿地地下生物量非常高,其凋落物和 根系分泌物促进土壤微生物生长,可以为甲烷氧化菌 提供碳源。王维奇等^[21]的研究中,发现芦苇湿地土 壤具有较强的甲烷氧化潜势,并认为土壤有机碳是影 响光滩土壤与芦苇土壤产 CH₄能力不同的主要原因。 Nat 等^[22]认为 CH₄产生率与 CH₄ 氧化能力呈正相关。 由此推测芦苇湿地土壤较高的 CH4 产生率提高了 CH4 氧化速率。陈中云等^[23]发现在 CH4 氧化活性很 低的土样中加入外源 CH4, 可刺激土壤中的 CH4 氧 化菌繁殖生长,促使 CH₄氧化速率达到最大。本研 究围垦稻田中, WK27 稻田的 SOC 和 TN 尽管低于 WK86 稻田, 但其 CH4 氧化速率高于后者, 可能的原 因是围垦年限增长,驱动其熟土化进程不同,导致其 CH4氧化微生物的群落结构不同。需要采用分子生物 学技术进一步研究不同围垦稻田土壤中 CH4 氧化微 生物的群落及数量特征。另外,本试验发现,WK51 和 WK86 稻田 CH4 氧化的固碳效率显著高于 WK19 和 WK27 稻田, 表明随着围垦植稻年限的延长, 其 CH4 氧化作用驱动较多的 CH4 碳源同化进入土壤微

生物碳中,有利于土壤有机碳的积累。

与无氮添加相比,氮添加促进了围垦稻田土壤 CH4氧化速率。Zheng 等^[24]发现在长期施肥的水稻土 中 Type Ⅱ 型好氧 CH₄氧化菌数量是 Type Ⅰ 型好氧 CH₄氧化菌的 1.9 倍 ~ 3.3 倍,长期施肥对 Type Ⅱ 型 CH4氧化菌起到促进的效果;同样 Bodelier 等^[25]则发 现,添加尿素后提高了 CH₄ 氧化菌(Type I 型和 Type II 型)的活性。外源氮输入会影响土壤微生物群 落结构和生理活性,直接改变土壤 CH4 的排放和消 耗,究其原因,可能是添加外源氮提高了 CH4 氧化 菌的活性并且促进了相关反应的酶合成。也有报道认 为硝化细菌可以氧化消耗 CH4, 硝化细菌的生长受外 源氮输入刺激,促进了土壤对 CH₄ 的氧化吸收^[26]。 受到氮的形态、浓度等影响,关于外源氮对 CH₄ 好 氧氧化影响研究结果并不一致。本试验中外源氮对 WK19 土壤 CH4 氧化速率的促进效应最大。在经过围 垦工程活动,围垦初期土壤受到影响较大,土壤有机 碳与氮流失严重,营养元素出现匮乏现象。有报道认 为,当土壤氮含量较低时,受土壤本底氮素限制土壤 CH4氧化菌的活性较低,适量的氮添加可以促进CH4 氧化菌提高其活性^[27]。但是如果土壤本底氮含量较 高,氮添加则会表现抑制作用。值得注意的是,虽 然在添加外源氮后芦苇湿地土壤 CH₄氧化速率仍然 显著高于其他土壤,但是与无氮添加相比并没有显 著变化。氮输入没有显著影响土壤 CH4氧化能力, 因为 CH4 氧化菌对氮存在一定的耐受性, 虽然氮输 入影响了 CH4氧化菌群落结构,但群落的整体活性 没有受到干扰。

从氮素形态看,NH₄⁺-N 输入对 CH₄ 好氧氧化的 促进作用大于其他两种形态氮。Bodelier 等^[25]发现, NH⁺可以刺激水稻根际土壤中 CH₄ 氧化菌的生长活 性。尽管有报道认为,NH₄⁺-N与CH₄结构非常相似, 可与CH4氧化菌的CH4单加氧酶结合,从而抑制CH4 氧化过程^[28]。然而,更多的报道发现,这种抑制作 用与土壤本底的养分状况密切相关,在养分相对匮乏 的土壤中,外源氮仍表现强烈的促进作用^[29]。本试 验所试湿地土壤的发育母质为河流沉积物,尽管在围 垦种稻的熟土化过程中盐分逐渐下降,有机质含量逐 渐增加,但相对内陆淡水稻田而言,其养分状况仍属 贫乏水平。因此,在此土壤中,3种形态的氮源包括 NH_4^+ -N 均大大促进了 CH₄氧化速率。需要注意的是, 围垦稻田土壤 CH4 氧化驱动的 ¹³C-SOC 净增量在 3 种氮形态添加条件下并未见明显变化,导致其 CH4 氧化的固碳效率下降。这说明围垦稻田施加氮肥后,

壤

可能会大大提高 CH₄转化为 CO₂的绝对数量,而对 CH₄ 同化进入土壤微生物生物量碳的绝对数量没有 明显作用。

4 结论

滨海稻田土壤的 CH₄ 好氧氧化速率存在显著差 异,其与围垦年限并无显著正相关,且均低于芦苇湿 地。CH₄氧化驱动的固碳量与氧化速率存在显著正相 关,且围垦年限长的稻田土壤中 CH₄ 好氧氧化的固 碳效率较高。3 种氮添加均显著提高了围垦稻田土壤 CH₄的好氧氧化速率,促进效应表现为 NH⁴₄-N>Urea> NO³₃-N;相反,3 种氮添加对围垦稻田土壤的固碳量 没有明显影响,导致其固碳效率减小。

参考文献:

- [1] Hmiel B, Petrenko V V, Dyonisius M N, et al. Preindustrial
 ¹⁴CH₄ indicates greater anthropogenic fossil CH₄ emissions[J]. Nature, 2020, 578(7795): 409–412.
- [2] Zheng Y L, Hou L J, Chen F Y, et al. Denitrifying anaerobic methane oxidation in intertidal marsh soils: Occurrence and environmental significance[J]. Geoderma, 2020, 357: 113943.
- [3] Blake D R, Rowland F S. Continuing worldwide increase in tropospheric methane, 1978 to 1987[J]. Science, 1988, 239(4844): 1129–1131.
- [4] 于海洋,张广斌,马静,等.稻田CH₄和N₂O排放对大气CO₂浓度升高响应的研究进展[J]. 土壤, 2021, 53(3):458-467.
- [5] 李珊,杨越超,姚媛媛,等.不同土地利用方式对山东 滨海盐碱土理化性质的影响[J].土壤学报,2022,59(4): 1012-1024.
- [6] Song C C, Wang L L, Guo Y D, et al. Impacts of natural wetland degradation on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China[J]. Journal of Hydrology, 2011, 398(1/2): 26–32.
- [7] Shi Z, Wang R C, Huang M X, et al. Detection of coastal saline land uses with multi-temporal landsat images in Shangyu city, China[J]. Environmental Management, 2002, 30(1): 142–150.
- [8] Xie X F, Pu L J, Wang Q Q, et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China[J]. Science of the Total Environment, 2017, 607/608: 1419–1427.
- [9] 侯颖,李红,赵敏,等.从湿地到农田:围垦对生态系统 碳排放的影响[J].应用生态学报,2017,28(8):2517-2526.
- [10] 杨红霞, 王东启, 陈振楼, 等. 长江口潮滩湿地-大气界 面碳通量特征[J]. 环境科学学报, 2006, 26(4): 667-673.
- [11] Wang L, Coles N, Wu C F, et al. Effect of long-term reclamation on soil properties on a coastal plain, southeast China[J]. Journal of Coastal Research, 2014, 296: 661–669.

- [12] 张文敏, 吴明, 邵学新, 等. 杭州湾南岸不同围垦年限 农田土壤有机碳及其活性组分变化[J]. 水土保持学报, 2014, 28(2): 226-231.
- [13] 赵新新,金晓斌,杜心栋,等.沿海滩涂垦殖对土壤氮 总转化速率的影响分析[J].长江流域资源与环境,2015, 24(9):1552–1559.
- [14] Fu Q L, Ding N F, Liu C, et al. Soil development under different cropping systems in a reclaimed coastal soil chronosequence[J]. Geoderma, 2014, 230/231: 50–57.
- [15] Ma C, Zheng R, Zhao J L, et al. Relationships between heavy metal concentrations in soils and reclamation history in the reclaimed coastal area of Chongming Dongtan of the Yangtze River Estuary, China[J]. Journal of Soils and Sediments, 2015, 15(1): 139–152.
- [16] 宋怡轩,金锐,张鑫磊,等. 围垦对崇明东滩湿地全程 氨氧化微生物的影响[J]. 土壤, 2020, 52(6): 1196–1202.
- [17] Cui J, Liu C, Li Z L, et al. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China[J]. Soil and Tillage Research, 2012, 123: 50–60.
- [18] Trimmer M, Shelley F C, Purdy K J, et al. Riverbed methanotrophy sustained by high carbon conversion efficiency[J]. The ISME Journal, 2015, 9(10): 2304–2314.
- [19] Whalen S C, Reeburgh W S, Sandbeck K A. Rapid methane oxidation in a landfill cover soil[J]. Applied and Environmental Microbiology, 1990, 56(11): 3405–3411.
- [20] Trotsenko Y A, Murrell J C. Metabolic aspects of aerobic obligate methanotrophy [J]. Advances in Applied Microbiology, 2008, 63: 183–229.
- [21] 王维奇, 曾从盛, 仝川. 闽江口芦苇湿地土壤甲烷产生 与氧化能力研究[J]. 湿地科学, 2008, 6(1): 60-68.
- [22] Van Der Nat F J W A, Middelburg J J. Effects of two common macrophytes on methane dynamics in freshwater sediments[J]. Biogeochemistry, 1998, 43(1): 79–104.
- [23] 陈中云, 闵航, 吴伟祥, 等. 土壤中甲烷氧化菌种群数 量及其与甲烷氧化活性的关系[J]. 浙江大学学报(农业 与生命科学版), 2001, 27(5): 546–550.
- [24] Zheng Y, Zhang L M, Zheng Y M, et al. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices[J]. Journal of Soils and Sediments, 2008, 8(6): 406–414.
- [25] Bodelier P L E, Roslev P, Henckel T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403(6768): 421–424.
- [26] Chan A S K, Parkin T B. Methane oxidation and production activity in soils from natural and agricultural ecosystems[J]. Journal of Environmental Quality, 2001, 30(6): 1896–1903.
- [27] 曹开勋,赵坤,金王飞飞,等.水氮互作对稻田温室气体排放的影响[J].土壤学报,2022,59(5):1386-1396.
- [28] 王智平, 胡春胜, 杨居荣. 无机氮对土壤甲烷氧化作用 的影响[J]. 应用生态学报, 2003, 14(2): 305–309.
- [29] 张广斌,马静,马二登,等. 尿素施用对稻田土壤甲烷 产生、氧化及排放的影响[J]. 土壤,2010,42(2):178-183.