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徽宣城  242000；3 宁波市农业科学研究院，浙江宁波  315040) 

摘  要：以市售土壤改良剂和磷石膏为基质，以溶磷菌为接种剂，采用单因素试验、Plackett-Burman 试验和中心组合设计(Central 

composite design) 试验等方法优化半固体发酵工艺，结合氨水矿化 CO2 技术制备了磷石膏土壤改良剂。结果表明：在料水比 1∶5、

初始 pH 8.05、温度 52.33 °C、培养时间 7 d 和溶磷菌接种量 0.75% 发酵条件下，磷石膏土壤改良剂发酵液中可溶性磷含量达

143.71 mg/L；在氮硫比 3、反应温度 35 °C 和反应时间 4 h 条件下，磷石膏与氨水和 CO2反应，土壤改良剂中可溶性硫含量为 12.67 g/L。

总体上，通过半固体发酵法制备的磷石膏土壤改良剂能够有效调节土壤 pH、增加可溶性磷酸盐和硫酸盐含量和提高土壤固碳量，

对土壤改良和地力提升具有重要意义。 
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Preparation and Fermentation Process Optimization of Phosphogypsum Soil Amendments 
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Abstract: This study utilized commercially available soil conditioners and phosphogypsum as substrates, and phosphate- 

solubilizing bacteria as inoculants. Methods such as single-factor experiments, screening experimental design (Plackett-Burman 

design), and central composite design (CCD) were used to optimize the semi-solid fermentation process, combined with ammonia 

mineralization CO2 technology to prepare a phosphogypsum soil conditioner. Results indicated that under conditions of a 

material-to-water ratio of 1∶5, an initial pH of 8.05, a temperature of 52.33 °C, a cultivation time of 7 days, and an inoculum 

amount of 0.75%, the soluble phosphorus content in the soil conditioner reached 143.71 mg/L. Under conditions of a 

nitrogen-to-sulfur ratio of 3, a reaction temperature of 35 °C, and a reaction time of 4 hours, the soluble sulfur content in the soil 

conditioner was 12.67 g/L. Phosphogypsum soil conditioner produced via semi-solid fermentation effectively adjusts soil pH, 

increases the content of soluble phosphates and sulfates, and improves soil carbon sequestration, which is of significant 

importance for soil improvement and fertility enhancement. 
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磷石膏是湿法生产磷酸时产生的工业固体副产

物，每生产 1 t 磷酸就会产生 4 ~ 5 t 的磷石膏[1]。磷

石膏的主要成分为 CaSO4·2H2O，含有钙、镁、氟等

磷酸盐和硅酸盐，还有少量的重金属和放射性物质[2]。

在全球范围内，大量堆存的磷石膏不仅占用了农田和

林地，影响土地资源的利用，还引起了严重的环境污

染问题。磷石膏中残存有酸性物质、重金属和放射性

元素，产生的酸性渗滤液可能会渗入地下水和土壤，

引起土壤酸化和水体污染[3]。近年来，磷石膏的利用

取得了一定进展，如作为建筑材料，具有一定的市场
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需求；作为土壤改良剂，能够改善土壤结构，增加土

壤的透气性和保水性；作为水泥生产中的缓凝剂，可

以调节水泥的凝结时间，改善水泥的性能[4]。整体来

说，磷石膏的利用现状正在逐步改善，资源化利用途

径逐渐拓宽。而目前磷石膏农用研究方面仍然面临很

多问题，如钙磷营养元素未得到充分利用，化学处理

方法存在二次污染等。因此，开展磷石膏资源高值利

用研究，具有重要的理论和实际意义[5]。 

施用土壤调理剂是一种改良盐碱性土壤的有效

措施。它通过调节土壤酸碱度，改善土壤理化性质来

促进作物对水分和养分元素的吸收，从而促进作物的

生长[6-7]。国内外对土壤改良剂的研发和使用日益增

加，针对不同土壤类型，已开发出多种类型的改良剂，

例如，以石灰、磷酸钙、硫酸铁等为原料制备的矿物

土壤改良剂，能够调节土壤酸碱度，提供植物所需的

营养元素[8-9]；以微生物制剂为原料制备的生物土壤

改良剂，能够增加土壤微生物活性，促进有益微生物

生长[10]；以石膏、沙子、粉煤灰等为原料制备的物

理土壤改良剂，能够改善土壤质地，增加土壤通气性

和排水性[11]。 

基于以上，本研究以商品化土壤改良剂和磷石膏

为基质，拟采用半固体发酵法和氨水矿化 CO2 技术，

改性商品化土壤改良剂，制备磷石膏土壤改良剂。且

为提高产品品质和降低生产成本，拟通过单因素试

验、Plackett-Burman 试验和基于响应面分析法的中心

组合设计(Central composite design，CCD)探究影响发

酵工艺的显著性因素并预测最优发酵条件，优化半固

体发酵工艺，以为磷石膏资源化利用提供新的途径，

为土壤改良和地力提升提供技术支撑。 

1  材料与方法 

1.1  供试材料 

供试磷石膏取自安徽省宁国市司尔特肥业股份

有限公司，其主要成分为 CaSO4 76%、磷 0.64%，含

水率 18%，pH 5.8。市售土壤改良剂购买自沃农肥业

有限公司，主要成分为复合菌、有机硅和菜粕，有效

活菌数≥2×1010 cfu/g，含水率≤10%。 

供试土壤样品采自司尔特肥业股份有限公司的

磷石膏长期贮存地，堆放时间 25 年以上。土壤样品

于 2023 年 3 月采集，采用 5 点采样法采集 0 ~ 10 cm

土样，混合均匀，去除石块和根茎等杂质后，留取土

壤样品约 5 kg，置于–20℃冰箱保存。 

供试菌株 XP61、XP81 和 XP10，为溶磷菌，由

本试验筛选，用于进行发酵试验。溶磷菌能够将磷石

膏中难溶的 Ca3(PO4)2 转变成植物可以利用的可溶性

磷酸盐，进而增加磷石膏土壤改良剂中可溶性磷含

量。菌株保藏于南京农业大学环境微生物实验室，命

名为 Bacillus sp. XP61，Enterobacter sp. XP81，

Bacillus sp. XP10。 

蒙金娜无机磷培养基 (g/L)：葡萄糖  10 g，

(NH4)2SO4 0.5 g，MgSO4·7H2O 0.3 g，FeSO4·7H2O 

0.03 g，NaCl 0.3 g，KCl 0.3 g，Ca3(PO4)2 5 g，

MnSO4·7H2O 0.03 g，琼脂 15 g，pH 自然，118℃灭

菌 30 min，用于筛选溶磷菌。 

LB 培养基(g/L)：胰蛋白胨 10 g，酵母提取物 5 g，

氯化钠 10 g，用于纯化和接种溶磷菌。 

1.2  溶磷菌的筛选 

采用钼锑抗比色法筛选具有高效溶磷能力的菌

株。首先，取 10 g 供试土壤样品加入 100 mL 的三角

瓶中，再加入 40 mL 蒙金娜无机磷液体培养基富集

培养 7 d；采用稀释平板涂布法，对土壤富集液进行

梯度稀释至 10–5，吸取 100 µL 稀释液涂布于蒙金娜

无机磷固体培养基上，在 30  ℃ 培养箱中培养 7 d；

挑取产生明显透明圈的菌落，划线纯化 3 ~ 6 代，直

至培养皿上长出单菌落。然后，将单菌落接种于 LB

液体培养基中培养至指数生长期(约 1×108 cfu/mL)，

吸取 100 µL菌悬液加入 5 mL蒙金娜无机磷液体培养

基中。同时设置不接菌悬液的对照组，每组设 3 个

重复。在恒温振荡摇床上连续培养 3、7 和 11 d 后，

各取 2 mL 菌液，在 10 000 r/min 的离心机上离心

10 min，去除菌体，吸取 0.5 mL 上清液，采用钼锑

抗比色法测定样品的 OD700 值，并根据磷标准曲线计

算各菌液中的磷含量，减去对照组中的磷含量，即可

得到不同培养时期菌株的溶磷量。 

1.3  溶磷菌种子液的制备及发酵体系的构建 

向 250 mL 锥形瓶中加入 100 mL 蒙金娜无机磷

液体培养基，灭菌后将活化的溶磷菌转接到液体培

养基中；将培养基置于 30℃、180 r/min 摇床中培

养 24 h，吸取菌液并划线培养获取单菌落；挑取单

菌落转移至 100 mL LB 液体培养基中，恒温培养 16 h

制成种子液，用于菌种发酵培养[12]。 

称取碾磨过筛后的市售土壤改良剂 27 g 和磷石

膏 3 g 作为磷石膏土壤改良剂发酵基质，装入 250 mL

锥形瓶中，再按试验设定比例添加溶磷菌种子液和无

菌水，搅拌均匀，并在试验设定的条件下静置发酵。 

1.4  试验方法 

单因素试验：为探究料水比、初始 pH、发酵温

度、发酵时间和接种量 5 个因素对磷石膏土壤改良剂
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发酵进程中磷含量的影响，每个因素设置 5 个水平进

行试验。其中，料水比设置为 3、4、5、6、7，初始

pH 设置为 5、6、7、8、9，发酵温度设置为 30、37.5、

45、52.5、60 ℃，发酵时间设置为 5、6、7、8、9 d，

接种量设置为 0.5%、0.75%、1%、1.25%、1.5%。单

因素试验过程中，其他因素采用中值，每组试验设置

3 次重复。 

Plackett-Burman 试验：Plackett-Burman 试验是

针对多因子对于因变量显著性影响的筛选试验，主要

通过比较各因子高低水平对响应变量的影响差异来

区分各因子的显著性[13]。本研究采用 Plackett-Burman

试验分析发酵因素对发酵液中溶磷量的影响。上述 5

个影响因子分别取高(1)和低(–1)2 个水平进行优化，

以溶磷量作为单一响应值，确定对溶磷量影响显著的

因素。利用 Minitab17 软件构建了 12 组试验处理，

每组设置 3 个重复，各因素的高低水平如下：料水比

为 1∶4、1∶6；初始 pH 为 7、9；发酵温度为 45、

60 ℃；发酵时间为 6、8 d；接种量为 0.5%、1%。 

CCD 试验：CCD 试验是指基于响应面分析方法

的中心组合设计试验。本研究使用 Design-Expert 13

软件设计 CCD 试验，分析 Plackett-Burman 试验获得

的显著影响因素之间的交互关系对发酵液中溶磷量

的影响，以获得最优的发酵参数。CCD 试验中选取

显著影响因素的低(–1)、中(0)、高(1)3 个水平，共 13

组处理进行试验，每组设置 3 个重复，各因素水平设

置如下：初始 pH 为 7、8、9；发酵温度为 45、52.5、

60 ℃。 

氨水矿化 CO2 试验：由于磷石膏中主体成分为

硫酸钙，通过氨水矿化 CO2 反应，可将磷石膏中的

硫酸钙转化成可溶性的硫酸铵[14]，进而去除硫酸钙，

提高土壤改良剂中硫酸根离子含量。将 Plackett- 

Burman 试验后的最优发酵产物转入可密封的西林瓶

中，加入一定量的氨水，并通入 CO2 气体，探究氮

硫比、反应温度及反应时间对硫酸钙分解的影响。其

中，氮硫比设置为 2、2.5、3、3.5，反应温度设置为

25、30、35、40 ℃，反应时间设置为 2、3、4 和 5 h。 

发酵产物提取和测定：发酵结束后，将氨水矿化

CO2 反应后的发酵产物置于 150 r/min 摇床中，常温

下提取 30 min；随后吸取 2 mL 发酵液转入离心管中，

在转速 12 000 r/min 下离心 10 min，将上清液转入干

净的离心管中。采用钼锑抗比色法测定上清液中磷含

量[15]，即为磷石膏土壤改良剂中可溶性磷含量，并

采用铬酸钡还原法测定上清液中硫含量[16]。根据测

得的发酵液中的磷含量，计算得到发酵工艺后培养基

中可溶性磷含量，减去磷石膏初始可溶性磷含量

(25.5 ± 1.3) mg/L，即得到发酵工艺后培养基中可溶

性磷的净增加量。 

磷石膏土壤改良剂其他理化参数测定：pH 测定

参考土壤 pH 测定方法；可溶性氟采用选择性电极法

测定[17]；含水率采用烘干法测定。 

1.5  数据处理与统计分析 

试验数据采用 SPSS 26 软件进行单因素方差分

析，结合 Duncan、LSD 等方法进行多重比较，并以

P<0.05 作为具有显著性差异的判断标准。 

2  结果与分析 

2.1  溶磷菌溶磷效果 

本研究通过钼锑抗比色法测定，筛选得到 10 株

溶磷菌(图 1A)。其中溶磷量较高的 5 株菌，分别命

名为 XP61、XP62、XP81、XP82 和 XP10。菌株 XP61

第 11 天溶磷量最高，为 85.57 mg/L；菌株 XP62 第

11 天溶磷量最高，为 57.95 mg/L；菌株 XP81 第 7 天

溶磷量最高，为 103.34 mg/L；菌株 XP82 第 3 天溶

磷量最高，为 89.07 mg/L；菌株 XP10 第 7 天溶磷量

最高，为 64.22 mg/L 

将挑选的 5 株菌株进行混合溶磷，溶磷菌 XP61、

XP62、XP81、XP82 和 XP10 各自编号为 1、2、3、

4 和 5，测定任意 3 株溶磷菌混菌后的溶磷量，结果

如图 1B 所示。可见，135 组合在第 9 天时溶磷量最

高，为 201.2 mg/L，因此，选择菌株 XP61、XP81

和 XP10 进行后续发酵试验。 

2.2  磷石膏土壤改良剂发酵单因素试验结果 

设置不同的试验因子和因子水平，测定不同因

素下磷石膏改良剂发酵液中的溶磷量，结果见表 1。

不同因子水平下，发酵液中溶磷量存在显著差异，

优化前反应体系中溶磷量为 38.05 mg/L，优化后反

应体系中最高溶磷量为 144.32 mg/L，是优化前的

3.79 倍。不同初始 pH 和温度处理下，反应体系中

溶磷量差异显著，最高溶磷量分别是最低溶磷量的

1.54 倍和 3.68 倍，而其他试验因子不同水平下溶

磷量差异不显著。 

2.3  Plackett-Burman 试验结果 

Plackett-Burman 试验设计表和试验结果见表 2。

不同参数组合下发酵液中溶磷量差异明显，其中第 4

组处理下溶磷量最高，为 135.93 mg/L。根据试验结

果和回归系数表绘制标准化效应的 Pareto 图(图 2)，

可以更加直观地观察到不同因素对发酵的影响程度。

由图 2 可知，各因素对于半固体发酵的影响程度为： 
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(图 B 中，组合中的 1、2、3、4、5 分别表示 XP61、XP62、XP81、XP82、XP10；柱图上方不同小写字母表示不同培养时间之间差异显著(P<0.05)) 

图 1  单菌(A)与混菌(B)溶磷效果 
Fig. 1  Phosphorus solubilization under single bacteria (A) and mixed bacteria (B) 

表 1  不同发酵参数对磷石膏土壤改良剂溶磷量的影响 
Table 1  Effects of different fermentation parameters on dissolved phosphorus content from phosphogypsum soil amendment 

料水比 初始 pH 温度 培养时间 接种量 

因子 

水平 
溶磷量 
(mg/L) 

因子 

水平 
溶磷量 
(mg/L) 

因子水平
( )℃  

溶磷量 
(mg/L) 

因子水平
(d) 

溶磷量 
(mg/L) 

因子水平 
(%) 

溶磷量 
(mg/L) 

1∶3 91.42 ± 6.27 a 5 76.05 ± 4.3 b 30 66.25 ± 1.07 b 5 128.54 ± 0.55 b 0.5 141.61 ± 4.85 ab

1∶4 86.48 ± 8.35 ab 6 69.60 ± 3.27 b 37.5 38.05 ± 0.77 c 6 140.64 ± 9.56 ab 0.75 144.32 ± 15.68 a

1∶5 93.25 ± 8.28 a 7 57.41 ± 0.88 c 45 45.97 ± 0.41 c 7 142.55 ± 3.42 a 1 131.49 ± 5.39 b

1∶6 84.27 ± 2.76 ab 8 88.40 ± 2.46 a 52.5 140.2 ± 6.04 a 8 137.49 ± 7.06 ab 1.25 127.89 ± 1.83 b

1∶7 76.55 ± 3.32 b 9 69.63 ± 1.54 d 60 58.08 ± 10.37 b 9 119.49 ± 16.49 b 1.5 139.11 ± 0.31 ab

注：表中同列不同小写字母表示同一试验因子不同水平下差异显著(P<0.05)。 
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C>B>E>A>D，P 值分别为 0.009、0.034、0.184、0.361

和 0.615，其中初始 pH(B)和温度(C)的 P<0.05，表明

初始 pH 和温度是磷石膏土壤改良剂发酵的显著影响

因素，后续将选取这 2 个因素进一步优化。 

表 2  磷石膏土壤改良剂 Plackett-Burman 试验设计表及

试验结果 
Table 2  Experimental design and results of Plackett-Burman 

experiment for phosphogypsum soil amendment 

运行序 区组 A B C D E 溶磷量(mg/L)

1 1 1 –1 1 –1 –1 108.76 

2 1 1 1 –1 1 –1 31.10 

3 1 1 –1 –1 –1 1 76.90 

4 1 1 –1 1 1 –1 135.93 

5 1 –1 –1 –1 1 1 37.03 

6 1 –1 1 –1 –1 –1 56.54 

7 1 –1 –1 1 1 1 105.51 

8 1 1 1 –1 1 1 39.32 

9 1 –1 1 1 1 –1 89.96 

10 1 1 1 1 –1 1 62.44 

11 1 –1 1 1 –1 1 48.46 

12 1 –1 –1 –1 –1 –1 49.63 

注：区组是一种类别变量，用来解释响应变量中未被因子解

释的变异。表中 A 表示料水比，B 表示初始 pH，C 表示温度，D

表示时间，E 表示接种量。 

 

(图中的虚线表示显著性分界线，超过此虚线表明影响显著) 

图 2  磷石膏土壤改良剂 Plackett-Burman 试验 Pareto 图 
Fig. 2  Pareto chart of phosphogypsum soil amendment 

Plackett-Burman experiment 

 

2.4  CCD 试验结果 

通过Design-Expert 13软件设计CCD试验(表 3)。

对试验数据进行拟合分析，获得溶磷量和显著影响因

素之间的多元二次回归方程：溶磷量=142.37+3.89B– 

1.58C+2.83BC–35.01B2–30.69C2。方差分析结果表明

(表 4)，该模型的 P<0.01，模型因变量与各因素之间

关系显著，所建模型可靠，可以用该模型分析和预测

发酵液中最大溶磷量。 

表 3  磷石膏土壤改良剂 CCD 试验设计表及试验结果 
Table 3  Experimental design and results of CCD experiment for 

phosphogypsum soil amendment 

变量 运行序列

C：温度(%) B：初始 pH 

溶磷量(mg/L)

1 52.5 8 144.26 

2 52.5 8 141.56 

3 45 9 70.94 

4 52.5 8 136.84 

5 45 7 73.49 

6 52.5 8 146.25 

7 45 8 90.31 

8 52.5 8 142.95 

9 60 8 78.64 

10 52.5 9 84.64 

11 60 9 78.54 

12 52.5 7 67.01 

13 60 7 69.77 

表 4  磷石膏土壤改良剂 CCD 试验方差分析 
Table 4  Variance analysis for CCD experiment of phosphogypsum 

soil amendment 

方差来源 平方和 自由度 均方 F P 显著性

模型 13 531.42 5 2 706.28 77.98 <0.000 1 显著

C 19.92 1 19.92 0.574 0.473 4  

B 121.31 1 121.31 3.5 0.103 7  

BC 32.04 1 32.04 0.9231 0.368 7  

C2 6 552.07 1 6 552.07 188.8 <0.000 1  

B2 8 528.92 1 8 528.92 245.76 <0.000 1  

残差值 242.93 7 34.7    

失拟项 192.73 3 64.24 5.12 0.074 3 不显著

纯误差 50.2 4 12.55    

总计 13 774.35 12     

注：R2=0.9824、R2
Adj=0.9698、R2

Pre=0.8948。 

 
响应面曲线的 3D 效果图见图 3。该图显示了显

著影响因子之间的交互作用对磷石膏土壤改良剂半

固体发酵的影响，同时也预测了显著影响因子是否存在

最佳值。该模型预测的最佳发酵条件：温度 52.33 ℃、

初始 pH 8.05，理论最大溶磷量为 142.50 mg/L。为验

证模型预测的溶磷量与实际溶磷量的拟合程度，以

优化后的工艺参数进行 3 次重复试验，试验测得的

最大溶磷量为 143.71 mg/L，与理论值接近，表明

此模型有效。 
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图 3  交互作用对磷石膏土壤改良剂发酵培养基溶磷量的

影响 
Fig. 3  Effect of interaction on phosphorus solubilization from 

fermentation medium of phosphogypsum soil amendment 

 
2.5  氨水矿化 CO2 反应结果 

采用铬酸钡还原法测定氨水矿化反应后磷石 

膏土壤改良剂发酵液中硫酸根离子浓度，结果如图

4 所示。当氮硫比为 3，反应 4 h 后，硫酸根离子浓

度达到最高。方差分析表明，氮硫比为 3 和 3.5 处理

与氮硫比为 2 和 2.5 处理之间存在显著差异，反应 4 h

和 5 h 处理下硫酸根离子浓度显著高于其他处理组。

在不同的反应温度下，硫酸根离子浓度也存在差异，

在 35℃下反应 4 h 后，硫酸根离子浓度达 12.67 g/L，

此时磷石膏的转化率为 50.02%，继续提高反应温度，

发酵液中硫酸根离子浓度降低。因此，确定最适反应

时间为 4 h，最适反应温度为 35℃。 

2.6  磷石膏土壤改良剂养分参数 

在最优发酵参数料水比 1∶5、pH 8.05、温度

52.33℃、溶磷菌接种量 0.75% 和培养时间 7 d 条

件下，采用氨水矿化 CO2 反应处理发酵产物，在氮

硫比 3、反应温度 35℃和反应时间 4 h 条件下，最

终获得的发酵产物属性见表 5。其中，可溶性磷含

量为 718.5 mg/kg，可溶性硫含量为 63.33 g/kg，可

溶性氟质量分数小于 0.18%，含水率为 18.4%，pH

为 6.2。 

 

(图中柱图表示硫酸根浓度，折线表示磷石膏转化率；柱图上方不同小写字母表示同一因子不同水平下差异显著(P<0.05)) 

图 4  不同反应参数对磷石膏土壤改良剂发酵液中硫酸根含量的影响 
Fig. 4  Effects of different reaction parameters on sulfate ion content in phosphogypsum soil amendment fermentation broth 

 
表 5  磷石膏土壤改良剂的部分理化参数 

Table 5  Partial physicochemical parameters of phosphogypsum soil 
amendments 

pH 可溶性磷
(mg/kg) 

可溶性硫
(g/kg) 

可溶性氟
(%) 

含水率
(%) 

6.2 718.54 63.33 <0.18 18.4 
 

3  讨论 

溶磷菌通过分泌有机酸或磷酸酶的方式转化磷

石膏中难溶性磷，进而提高反应体系中的可溶性磷含

量。杨美英等[18]对筛选到的溶磷菌的溶磷机制研究

发现，菌株 WJ1、WJ3 和 WJ6 可通过生成次级代谢

产物 α-酮戊二酸来转化难溶性磷酸盐。Karim 等[19]

从富营养化水体中筛选到两株溶磷菌，发现菌株

LW-17 和 9410-O 通过磷酸酶作用来分解无机磷，进

而提高水中可溶性磷含量。本研究中的溶磷菌与

Karim 等[19]的菌株为同一属，推测该溶磷菌也可能是

通过分泌磷酸酶的方式转化难溶性磷。其主要机理

是：溶磷菌分泌磷酸酶，磷酸酶作用于 Ca3(PO4)2 等

难溶性磷酸盐，断裂钙离子与磷酸根离子之间的离子

键，进而释放可溶性磷[20-21]。此外，溶磷菌的溶磷量 



第 5 期 许维东等：磷石膏土壤改良剂的制备与发酵工艺优化 1127 

 

http://soils.issas.ac.cn 

越高，其溶磷能力越强。苏辉兰等[22]分离筛选出可

以将难溶性磷转化成可溶性磷的菌株 W3，溶磷量达

148.57 mg/L。本研究中，溶磷菌 XP61、XP81 和 XP10

的单菌溶磷量分别为 85.57、103.34 和 64.22 mg/L，

通过混菌正交优化后，3 株溶磷菌的混合溶磷量达

221.32 mg/L，显著高于单菌溶磷量。由于不同菌株

作用效果存在差异，混菌之间互利协同作用使酶系比

例协调，同时提高了酶量，使得混菌发酵的溶磷能力

得到提升[23]。 

固体发酵过程中，料水比、初始 pH、发酵时间、

发酵温度和混菌比例等因素对发酵产物的产量和品

质影响很大[24]。本试验发现，发酵温度和初始 pH 是

磷石膏土壤改良剂发酵过程中的显著影响因素，选

择合适的发酵温度和初始 pH 是提高发酵效率的关

键[25]。本研究中，溶磷量随发酵温度变化呈现先增

高后降低的趋势，这可能是因为发酵温度的变化会影

响微生物自身的生长，并且微生物中多数的化学反应

是在酶的催化下完成的，不同的酶均有最适的温度，

温度的变化会抑制菌体的生长，减缓酶促反应速率，

影响代谢产物的合成[26]。pH 的变化不仅会影响酶的

活性，还会改变微生物细胞膜所带电荷的状态，进而

改变细胞膜的通透性，影响微生物对营养物质的吸收

和代谢产物的释放[27]。而其他发酵因子如料水比、

发酵时间和溶磷菌接种量等，并不是发酵过程中影响

溶磷量的显著因素。发酵基质中含水量过高会影响物

料的溶氧能力和松散性，加快发酵热量的散失；含水

量过低则会降低物料的溶解量，影响养分的传递和微

生物对基质的利用效率[28]。此外，虽然较低的菌体

接种量会延长物料的发酵时间，但是随着发酵时间的

延长，在发酵体系中最终会达到一个稳定的、最大的

微生物量[29]。 

磷石膏的主要成分为二水硫酸钙，在水中的溶解

度很低，仅为 1.8 g/L。采用氨水矿化 CO2 技术可将

硫酸钙碳酸化，可提高磷石膏土壤改良剂中可溶性硫

含量。本研究从对磷石膏转化效率影响较大的因子进

行优化，获得了较高的可溶性硫酸盐含量。根据化学

反应式，理论上氮硫比为 2 时，硫酸钙可被全部转化，

但由于氨水本身易挥发，且发酵基质中其他成分可能

会吸收部分氨水，导致当氮硫比为 2 时，硫酸钙不能

完全反应，需要适当增加氨水的用量；而过高浓度的

氨水会增加溶液黏度，NH4
+ 吸附在磷石膏表面反而

会抑制硫酸钙的溶解[30]。因此，优化试验参数后，

在氮硫比为 3 处理下，溶液中可溶性硫酸根离子浓度

最高。此外，过高的反应温度同样会加快氨水挥发，

导致磷石膏不能充分反应。与黄岩等[31]的研究结果

相比，本研究虽然未考虑 CO2 浓度对试验结果的影

响，但在试验中持续通入了足量的 CO2，增加了 CO2

在液相中的停留时间，使其与磷石膏基质充分反应，

确保了磷石膏能够达到最大转化率。Lee 等[32]对磷石

膏矿化反应参数进行优化，发现在加压条件下磷石膏

在 10 min 内转化率可达 95% 以上。增加压力可以增

大 CO2 与磷石膏接触反应概率，提高转化率，但加

压后容易引起细胞膜破裂，致使发酵细菌原生质外渗

而引起细胞死亡[33]。本研究为保证土壤改良剂中细

菌的数量和活性，未对矿化反应进行加压。而在常压

条件下，部分碳酸钙遇到溶有 CO2 的水会转化为可

溶性的碳酸氢钙，导致滤液中的 Ca2+物质的量增多，

抑制硫酸钙转化率[34-35]，这也是导致本研究中磷石膏

转化率较低的原因。经过各单因素试验优化后，本试

验中磷石膏转化率为 50.02%，即 1 t 磷石膏理论上可

以吸收固定 106.22 kg CO2，这可能是农田土壤固碳

增汇良好的后备材料。 

4  结论 

本研究以市售土壤改良剂和磷石膏为原料，采

用半固体发酵工艺制备磷石膏土壤改良剂，在单因

素试验获得较优发酵参数的基础上，利用 Plackett- 

Burman 试验筛选得到具有显著性影响的发酵因素

为初始 pH 和温度，进一步利用 CCD 试验获得显著

影响因素和可溶性磷含量之间的回归方程，绘制响应

面曲线，得到最佳发酵参数组合：发酵温度 52.33 ℃、

初始 pH 8.05，该条件下可溶性磷含量为 142.50 mg/L。

在氮硫比 3、反应温度 35 ℃和反应时间 4 h 条件下，

磷石膏土壤改良剂与氨水和 CO2 反应后，可溶性硫

含量为 12.67 g/L，可固定 106.22 kg CO2。总体上，

本研究制备的土壤改良剂，可以有效调节土壤

pH、增加可溶性磷酸盐和硫酸盐含量，进而提高

土壤固碳增汇能力，对土壤改良和地力提升具有

重要意义。  
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