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OB ARUFSELUEMES R K326 AR, ETELE 5 AEEMEOMBMERE N MBAT M 1 AERIKE:, FIE 4 Riot A4 FRok
KbBE . BO(0 kg/hm?®), B1(300 kg/hm?), B2(750 kg/hm*)Fl B3(1 500 kg/hm?), FEHRHFERE T 4 Rk 5 5 ab 30 3980404 Wy ok
IR RAFIE MR, 2558 . FEEMEBUT, 5 C-BO HHHL, A3 Haes3elh . sRIRIK & by B 1N (P<0.05), FHLH
C-BO<C-B1<C-B2<C-B3; ! C-B1.C-B2.C-B3 1Y -3 EHME S AU AR R 43 BB N T 13.26%.24.22%.36.20% #1 10.53% .
20.23%. 32.89%; {HA%AbIRIA] -+ HEiA A MR RN A HLER A ST R R AR W20 Mk . fEReVERIEUT, 5 R-BO AL, 403 F +
SN . RE IR AR B A Wy R SRR A BRI DR 4 2 B0t B2 40 T it P B ) B 2 e SR R a3, FLZE R-BL IR
KA. [FRt, 76 B0, Bl AbBT, $eAErp +-HEs Mt . b WaR BRSO DR ARmiT A HILIR 1Y) TR (B3 S0 2 v T 1B (P<0.05),
M B2, B3 ALHET, AR H e SRR E sk A aR & it B 3% = T4 1E(P<0.05). Mantel-test £6:56 & RDA Z-H13¢HH, 46 Lk
RN T R SR S R AR S R L 45 L, FEAE PSR R AR B A A B R R AT R IR E A RS
RGEFEENAE GRS, T LA SR AN - VR AT, ST AT SR 2 R

KR KEAN; FRRIEEC; IEEML; IR PRIk
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Changes in Microbial Residue Carbon in Tobacco Rhizosphere Soil Under Different Biochar

Application Rates

YANG Xiongwei' 2, HUANG Xiaoxia?, CUI Shifang?, JIN Hao’, ZHANG Jungang®, LIU Yanzhong', LUO Yigui'"

(1 College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China; 2 College of Landscape Architecture
and Horticulture, Southwest Forestry University, Kunming 650224, China; 3 Qujing Tobacco Company, Qujing, Yunnan
655400, China)

Abstract: The flue-cured tobacco variety K326 was used as the material, a one-year experiment was conducted based on a
long-term field trial with 5 years of C and R. Four biochar application rates were set: BO (0 kg/th), B1 (300 kg/th), B2 (750
kg/hm?), and B3 (1 500 kg/hm?). The effects of the four biochar treatments on the accumulation of soil microbial residue carbon
under the two cropping systems were compared. Results showed that under C, compared to C-B0, C-B1, C-B2 and C-B3
significantly increased soil amino sugar and residue carbon contents (P<0.05) by 13.26%, 24.22%, 36.20%, and 10.53%, 20.23%,
32.89%, respectively. However, there was no significant difference in the contribution of microbial residue carbon to organic
carbon among different treatments. Under R, compared to R-B0, soil amino sugar, microbial residue carbon, and the contribution
of microbial residue carbon to organic carbon all increased first and then decreased with increasing biochar application rate, with
the maximum values under R-B1. Furthermore, under BO and B1, the values of amino sugar, microbial residue carbon, and the
contribution of microbial residue carbon to organic carbon were significantly higher under R than under C (P<0.05). Conversely,
under B2 and B3, the contents of amino sugar and microbial residue carbon were significantly higher under C than under R
(P<0.05). Mantel test and RDA analysis indicated that soil organic carbon was the primary factor influencing amino sugar and
microbial residue carbon contents under C. In conclusion, R combined with biochar application is an effective approach to

regulating the stability of soil-tobacco-microbial ecosystem, which can effectively mitigate continuous cropping obstacles in
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tobacco cultivation and achieving sustainable tobacco production.

Key words: Tobacco; Cropping systems; Soil organic carbon; Amino sugars; Microbial residue carbon

WNEE (Nicotiana tabacum L.)2=F% F BB A FHE
Yz —M, mE ey [ RS, N 4 FE AR
Pl i AU R RO I = XY, SR, FR T AR S R B
Tl FIAR B A9 77 X AR T LA AR T HLAF 7 4 b o7 I 55
NIRRT, =N ES H 2550, K9
ARG AR - AR R G R, 8 MR H A
YL (1D 8- AL =7 TG0 Vs A Y 7 e 1 S
R, IR 0 2 R IKT AR X -3 A B ) 2 R
P, FIRHRE S T B2, M 4 )5 S A
B TR AR 25 ¥ B A s 2 A i 2524k . Tan 25195
Lt R, AR A T3R50 B A4
W2V, Rl — S S 2 B A i R
b, XS AL R ECT SRR ERm . AT
R LA SR B o 32 0o PRI, AR H A S R G
M A A g RS I A B A ) 2 22 S R 22— o AR
AR, IG5 R AVEY) & BREC AV RRIS 038 8 45 1 SO
AR IREE, P L IERE T A S M, e E N R
AT AT ) 0 A 7 o R AR T . AR R R
MR EAMR, BAA R EAE L IRsAS . AL
BREEAERE A, AUBE BT 8, iRk A
7 e R AR R AR T R e 2
BEPES), B A0, i AR e R
o KRR, AW B BEA R AR I % 1 1
RN A BRI, PREE KAL) 3Ty, dE— DA A
B AR [IE, AR I Y FLBR GG A8 3 e AR -
SRR AR X T RIRRE T 2L, T DR A e AR )
AR RN, SEFHREDIBI R, FEAE AN
A A v FH AR ) B e A R TR A SR TR T
1) Z R R s 25 A R e Ve o BRI, i A= B e
BEMEAT RSB AT % 1 - L5 i R E AR, 37+
SRR 5 T, SEI AT R E R AR

+ 324 WLk (Soil organic carbon, SOC)FE & Hkfk
YR ZHRAY , SR AL LU R 3 B B )
A A YR AU, T 0 E A A A
T DR ARG Tl 3G B BT 5 3 WA B ) A4t L A
REFREAYY, HAe P RS R E RS AS BA
FEE AR, a0 ~ 20 cm
)2 1 58) h U P sR A B XA ML - 34 T ik = 8
51%. @HEHH(Amino sugars, Ass)fE MHE YRR
HEGRRY), FERE T RE W) 0 40 B RE HA R Y
FaE VA IR 2P IR M T S A T e

fEESe bRz —U8, Hidr, B2 (Muramic acid,
MurN)WE R 40 R AR 5 R IR IR, B2 DA P 4
MO REAE Ry — kIR 5 2L H 2% (Glucosamine, GluN)
FETE T FLR AN, W2 B0 i DTk A K . iR
JHLBE TR RN 2 S A S o 1 25 [RlEY,
GluN/MurN 1 FUAEFH T s R B bR -5 440 7 240 B 5k P
Py AR EE B0 Angst SEPUIFSE A B, AHAR TR
Yl R AR A A, e BRSSO 1) o S HE A
THAE MR T 22 R P A3 T R A T R B8 AT Al (R 1) S 7
WAL RS Ty EENE . SR, K
R A 3 RO - 3 W 2 R B s D P AR
U RO S A B A T A e A
FEEOL EAh, AR 1 P AR i AR ARl
Ak KSR R 2R A A B PR, RS AR
I R R A A BB Y [ A AR E L X0 T
PR AR AT Th E MR 0 AR A A FEE R

ity s T A OB A A S A RN = e A - M U
it FL R Ry 4 [ R K A A I A P b P AR S
456 M DXCSE PR A I O, AR IR AL B K326 ik
PRl IRFCESE 5 AFIEMEMRAE (R - R EE )
A AR A T8, RSP AR BVER N AN AR
Yy it %k - 3B W AR AR AR SRR A 5
PRUF T 1A W 3 VA e %F 38 IR ) DR, 48R
A W B R AR 2 i i VE B AG Hh 0) VE FHAIL o i ik A B
5, B TE N8 M 34 A ik () P A} 2 B A i
IS AR 2

1 HESH®

1.1 R XRS5 SR
e i A T 2= 48 I T 3 £ X (250407 N,

103°39' E), 44FEAMREA, Fokse, TR0,
JERATRED B i SR 2 IR I b R 22 5 AR TR AR
F1 5 AERRAE (IR - FOK AR AR, 3086 FH M P340
AE ¥ 5), 3R T e+ | FEAR R AL R L3
1. HERAEY TR N2 600 C IR T KRS FFA 1) it
%, AP pH 10.09, AL 899.00 g/kg,
428.10.09 g/kg, AW 3.61 g/kg, A% 100.89 mg/kg,
BT 14.59 glkgo HHAHFL AP R K326(F & H1 M
A RTHEA R, RAER AT,
TR A A 2 P 1 R R A — B g B v R T
Bk
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Table 1 Initial physicochemical parameters of tested soil

BHER pH A ML (g/kg) T A (mg/kg) A %W (mg/kg) HERCE (mg/kg) R (g/kg)
AR 497 29.40 93.20 21.42 304.98 1.56
Ak 5.60 32.71 126.20 51.70 401.23 1.61

1.2 R R B

RIS 2 FBHER, 4 D EY A B (%
2), FHBEHLXAH BT, &AM 3 kER, /DX
(60.61 m?)100 B4, 3t 24 A~/NX, 1 100 #k/667m?;
HRAE 1 b AR o0, A ) B e SR FHARIAR AT 7 it (35
NE5 AW iR & 45— Ui ), APLIE R HAE
SN, MERIRYEALB AL EI 5 2 5, HEY L B AR
A 7 R R4 T T

HHEF 2021 4E 2 A 10 BIFIAIEE, 2021 4F 4
A 25 Hi R Hk . TRk 65d Jm, /X
PLEEHL 3 BRIG AR, B IARPR LRy —AEE , B/h
X 3 WHEE ., KR E B BUL IS, BHEMEEIE, Ik
EMR R 38 o B ek AT RIS, icE
UKEHT 5L 2 o o 2 mm 0, 2Bk 38 A 4RAR R
AT o B T IEREASHE S R . — AR
SEEE, SR AT, FTIE - g A SR
TIEEFNE S 5 — W20 CUkA, T
e EHES KR AR

Fz2 R
Table 2 Experimental design

HHER AbFRLH VLI WIRTS
HEAE©) C-B0O XFIR, ZEW R A i 0 kg/hm®
C-Bl AW BRI 300 kg/hm?
C-B2 A W S A IR 4 750 kg/hm?
C-B3 AW R AN 1500 kg/hm?
BIER) R-BO MR, AW AR N O kg/hm’
R-B1 AW IR 300 kg/hm?
R-B2 AW I 750 kg/hm?
R-B3 AR AEER I 1500 kg/hm?
1.3 TEHAUE
1.3.1 3R - R A M T R Ty

SR (IR ) PP H3ES K (Soil water
content, SWC)FHRERHfif 1IEE T 105 CHEFEHF
ZLET 48 h RiHE )T, RTINS 25(8; T pH
KA pH HHINE (FKEE 12 2.5); HHEAHLER(Soil
organic carbon, SOC)F4:%(Total nitrogen, TN)FHJG
FE MY (Vario MAX, Elementar, fEE)E, +iE
W (Total phosphorus, TP)FHEHEPTEL IEIE ., +

HEEE S A (Nitrate nitrogen, NH;-N)2K 4N 6L E
(B IR LU 5D -
132 HEEEUEREINE ST MR Indorf S
RIS, IR T T R IR
(Muramic acid, MurN) . % 3% % ¥ (Glucosamine ,
GluN), &I 7B (Galactosamine, GalN)AY ¥ J& {d
& BEWAH (1% Y (Dionex Ultimate 3000, Thermo
Fisher Scientific) , BC #& 1 /\ k¢ % & b fE B+
(Accclaim120 C18, 150 mm, 4.6 mm, 3 pm, Thermo
Fisher Scientific), F&FA A THRIATAfLALEE
HRAIE 5 A TR 5 2 M I b VR T 1) € 3% PRTX B~ 2
FEWE AT 5 E FE B

MUEL GIluN BRI IR GluN, AT L3S
FAF T 5R B W 0 BT R TR 24 JE A 4 B (Fungal
glucosamine, F_GluN): F_GluN = GluN -2 x MurN x
179.17+251.23 . FAENE B 5 (Total Ass) b 2% Z Il &
A R & B GluN F MurN FH 4
HAFH, AR TR,

FNC =(GIluN+179.17 - 2xMurN +251.23)x179.17x9

(1)
BNC = MurN x 45 )
MNC = FNC + BNC 3)

A : FNC R FLIRGR ISR ; BNC 278 4l R 8RR Bk 5
MNC FoRAYER AR ; GluN FoR 2 M % ;
MurN /R MEBER 5 179.17 £ 251.23 J& GluN Al MurN
(531t 9 Fl 45 535312 FL A AR AR 240 TR 5 Atk
R e R B
1.4 HHESH

KA Excel 2019 %4550 3 At + R 7 T30
iz SPSS 26.0 R E /725341 (One-way ANOVA)
A TR — BV EASE S AN R A 40 T s i b B2 ] ) 25
5, SKH Ducan 73T 2 5 L 8(0=0.05); #HERS
AT A PR ) A2 B A s FH XU 28 220007 5 F R
JE RIS AEAS RIS BT[] £ ) 5T e Ak B AN [+
PHERE A A9 22 54 . Mantel-test i Ti105 e b
R S A M SRR AR DG, A R
A, vegan 3 F1 MASS 41144 . Canoco 5.Origin 2018,
R AT o BTAA B A A bR
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2 ZER591Mh

2.1 BHMEER SEYRURAAIE T T8R4 RAFIE
2 3 v, AW pH, SOC, TP,
NH;-N. C/N #8500, 1 SOC [RIRfZ #FER
A= I e Ak B e 3 52 ELAE FH IR 3R [R] 52 0 (P<0.05)
E%EET, 5 C-BO AL, C-B1. C-B2., C-B3 1 SOC

YMIREAINT 2.19%. 19.45%. 31.92%, [@IRf C/N 43
FIHENT 20.51%. 19.93%. 68.13%; TP 43K T
17.12%. 11.64%. 26.71%. 7E5e4EH, 5 R-BO AL,
R-Bl., R-B2, R-B3 ' pH il C/N 355 &1 T
12.44% . 14.13% . 16.90% FI 46.12% . 41.66% .

46.72%, 1 NHy-N WAL T 73.87%. 93.03%.

94.43% (P<0.05).

F3 FREBERA P LIREUIER

Table 3  Soil physiochemical properties under different tillage practices

Abg pH SWC(%) SOC(g/kg) TN(g/kg) TP(g/kg) NH.-N(mg/kg) C/N
C-BO 6.73+032a 12.33+0.90 a 7.30+0.13b 095+021a 1.46£0.08 a 1.43+£0.74a 8.63+2.12b
C-Bl 725+0.04a 1141+031a 7.46+0.29b 0.72+0.04 a 1.21 £0.04 be 0.56 £0.24 a 10.40 + 0.86 ab
C-B2 6.72+0.40 a 1249+ 1.61a 8.72+0.53 a 0.88+0.12a 1.29 £ 0.08 ab 2.25+0.64a 10.35+ 1.68 ab
C-B3 7.17+0.02a 10.73£0.62 a 9.63+038a 0.66 +0.01 a 1.07+£0.04 ¢ 0.66+£0.17 a 14.51+0.52 a
R-BO 6.51£048b 12.31+0.84 a 7.01+£0.12a 098+0.26a 1.29+£0.19a 2.87+0.84a 8.09+1.73b
R-B1 7.32+0.09 a 9.47+1.26a 726+047a 0.61 £0.04 a 1.09+£0.03 a 0.75+0.49b 11.82+0.49 a
R-B2 743 +£0.05a 1230+ 1.10 a 721+£022a 0.64+£0.05a 1.02+£0.0l a 0.20£0.02b 11.46+0.73 a
R-B3 7.61 £0.09 a 10.31+0.59 a 6.78+0.15a 0.57+0.04 a 0.95+0.05a 0.16 £0.02b 11.87+0.51 a
P ns ns woAE ns * ns ns
B * ns * ns *% * *
PxB ns ns *x ns ns * ns

. pH, MRWE; SWC, &/kdir; SOC, HHLEk; TN, 2% ; TP, &W; NHi-N, %A&4%; CON, AHRSLAZIL., C, #1E
HHERIEL; R, BAEHHER, B0, WA 0 kg/hm> (A IR4L); B, LW 300 kg/hm?; B2, AEWFiAR 750 kg/hm?; B3, ARG A
1 500 kg/hm?; P: PHERR, B: AWK, FFIA /NG T3R8 R —PRER R AS [ 58 A 40 Jo e Ak B ) 22 5 8 3 (P<0.05); 5

ZoHrd, * . ek R FOR & I E R H A B AR IAE P<0.05, P<0.01, P<0.001 /K -3, ns #REFAEE,

22 HHERXSEYRRLETLESERERR

$F1E

AR 1 AT, AW 5 A B R — 35 A 58 B G
MurN, GalN | GluN, F-GluN , Total Ass ., F-GluN/MurN
BIA WA (P<0.05). TEIEMET, BiE YR &
WA, GalN, GIuN, F-GIuN, Total Ass 45 #{
TR A (P<0.05), =R C-B0<C-B1<C-B2<
C-B3(® 1A~ 1E). 5 C-BO #}t, C-B1., C-B2, C-B3
' F-GluN/MurN ¥ 8 5 11(P<0.05), 43334 1
22.44% . 41.62% ., 30.24%(/& 1F), ZEf/EH, 5 R-BO
M, R-B2, R-B3 # MurN, GaIN, GluN, F-GluN,
Total Ass 3[4 (P<0.05), 73H FFET 16.50%.
17.24% . 18.69% . 18.96% . 18.12% #l 17.85% .
25.92%. 26.60%. 27.70%. 25.96%(& 1A~ 1E). Ffi
AW Bt 3 N AR b A s s B
BN 1B ~ 1D); 7EAYI Bk B2, B3 AbHEMT,
oo W3 = THAE(P<0.05).

23 MHEEXSEYRRLGET LIEMEMRE

fix B AR H 3G #L AR 9 TR AR AE

M 2 A, #HERC X BNC. FNC/BNC A ik
FRCWR T AR R R A BE K A B A8 AR R
FNC. BNC. MNC. FNC/BNC f . & 501 (P<0.05).
FEFEAET, B AR TR & I, FNC Fil MNC
5 E WA (P<0.05), EI N C-BO<C-Bl<
C-B2<C-B3(#l 2A ~2C). 7efefEr, 5 R-BOAMLL,
FNC. BNC. MNC ¥R —F B fbiasd, Hrh
R-B2 F1 R-B3 A ZFEK(P<0.05), 43 ilFEA% T
18.85%.16.39% .18.23% F1 27.65%.18.03% .24.72%,
R-B1 M{E G 578 1k BN e KA (K 2A ~ 2C). 1ELEY)
Fis BO. Bl F, #AEH FNC. BNC. MNC 3K T
AE; MifE B2, B3 T, HAAWE & THAEP<0.05),
Hrr, FNC/BNC J it 1 B G FNAH O AR PrR AR R A
foiik, 7EZEET, 5 C-BO AL, C-B1. C-B2, C-B3
i FNC/BNC ¥ & F®IN(P<0.05), %7
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Fig. 1 Content of soil amino sugars under different tillage practices
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Fig. 2 Contents of soil microbial residue carbon under different tillage practices
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BINT 22.11%. 41.58%. 30%(/¥ 2D); 7ERAEH, fEffEh, 5 R-BO L, R-BI ' FNC/SOC,
&GP ZH FNC/BNC 276 55 245 4, BNC/SOC. MNC/SOC ¥l 32 5% H N KA,

& 3 AT, BHEREE . AR AL B N HAs . R-B2 Fll R-B3 ¥ i EF#EAK (P<0.05), Zr 9 FRET
YEFAXT FNC/SOC. MNC/SOC A W Em, HHMER  21.23%. 18.65%.20.45%F1 25.35% . 14.83%.22.15%.
R EYFRRAL X BNC/SOC W50 . e A, TELEY Tk BOBL T, #4EH FNC/SOC.BNC/SOC.,
5 C-BO #Itk, C-Bl. C-B2. C-B3 {1 BNC/SOC #]  MNC/SOC & &K T4 4F(P<0.05); LY B2,
B, 0 R T 5.32%.20.24% ., 15.69%(€ 3B). B3 ', #%fEr BNC/SOC &3 & T #4E (P<0.05).

O © W% ®

— = S
X 1.0 P X 045 P: #xx < 4, P: #t%
5 (A) «a B: #** 5 (B) W A B: %k 8 13 © '*_2‘1 B: wkx
2 — PxB: 2 e PxB: ns 5 12t — PxB:
g 08f > 035 ib D g M b
=071 a a b m a ab — = Lo a a b
= . % % a = 030 I {_ . 4§ 0ol a % % {i
HB/ 0.6} {» HB/ 0.25 ¢ c &= 0.8 _I_
2 os] [ g " B = 0
é | § 0.20 E 06

04} = 0.
£ 03 & 015 =05
& 07 = g o4
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=, = #® 02
o1t & 0.05 = 0
" : K o1
w0 = 0 #Hooo
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3 FEHHEE B TR 5k i X B AL B B STRR

Fig. 3 Contributions of soil microbial residue carbon to organic carbon under different tillage practices
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24 HMEEXSEYRRLETELCEFNSE 5 ON BEMK(P<0.05); 1Mt EMEMHAE Y

A8 2 A0 2 00 B AR b 0 5 M R E PRBR G L PP E O BB AR5 4B).
Hil 4 AT, 7D, pH 5 TN, TP W3 fAH EAh R P A M S B E W i A e

X, 5 CON BFFEMRE; SOC 5 CON BFEME, 5 TR LM BT RDA 0 Hr 25 4 a1, RDA1 Fll RDA2

TP W EMAMSE; TN 5 TP WEIEME, 5 ON BER PR T 88.56% m2Em(F e, Hrh SOC X435

FHE; TGO UEYRRIARSZ SOC. TP, CO/N RIS MR s, o 70.9%(F=24.4, P=0.002)
1Y) 5 3 IR (P<0.05), HirpaZ SOC S KKl 4A). (¥ 5A). RDAI1 #ll RDA2 Fiflifi e T 89.21% (225

TEfSAE, pH 5 TN, TP BEMAE, 5 CON BEE  HE, Hrh SOC X A YR AR ik A8 S 1) fif 6 B fie v

HIZE; TN 5 TP BEIEME, 5 ON BEGHMIE; TP N 66.2%(F=19.6, P=0.002)(K 5B).

(A) 3, /l@;x Pearson’s r (B)

& o Pearson’s r
% O YTy, 1.0 1.0

5
| o pH 0.5 pH 0
0 0
swe o SWC o5
I SOC -0.87 IR soc =-0.95
(MurN, GalN, Mantel’s P (MurN, GalN, Mantel’s P
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Fig. 4 Effects of soil physicochemical properties on amino sugars and microbial residue carbon under different tillage practices
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