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Construction Strategies and Mechanisms of Synthetic Microbial Communities in Crop

Rhizospheres in Red Soil Regions: A Review
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Abstract: Red soil suffers from issues such as aluminum toxicity, low phosphorus efficiency, and pathogenic infections, which
severely restrict crop growth and yield. Synthetic microbial communities (SynCom) hold great potential in improving rhizosphere
microecology and enhancing stress resistance due to their predictable functions and environmental adaptability. However, the
colonization of exogenous synthetic microbiota in red soil rhizosphere is challenged by native microbial competition, high
concentrations of active aluminum toxicity, and allelopathic effects of root exudates. This study focused on the precise
construction of synthetic communities in red soil, addressing three core questions: methods for selecting suitable strains based on
functional complementarity and synergistic effects; using cross-feeding experiments to analyze metabolic interaction networks
within the community and establish quantitative models; revealing how rhizosphere communication mechanisms regulate the
colonization efficiency of synthetic microbiota. Relevant research provided theoretical and technical foundations for microbial
improvement strategies to enhance soil quality and productivity in red soil regions.

Key words: Red soil; Synthetic microbiome; Root exudates; Cross-feeding; Raman spectroscopy
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Fig. 1 The colonization advantage of local bacteria
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Fig. 2 Design process of synthetic bacterial communities
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