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Amelioration of Acidic Soils: Precision Regulation Based on Targeted Aluminum Control
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Abstract: The essence of soil acidification lies in the imbalance of acid-base equilibrium. When pH drops below 5.5, active

aluminum in the form of AI*

rapidly increases with decreasing soil pH, becoming a critical factor limiting crop growth,
development, and yield. This review systematically analyzed the causes of soil acidification and aluminum toxicity, elucidated
plant aluminum-tolerance strategies and their molecular regulatory networks. It emphasized research progress in targeted
aluminum control technologies, transitioning from single-effect approaches to integrated regulation and from empirical
application to precision implementation, including traditional inorganic amendments, novel organic-inorganic composites or
nano-controlled-release materials, biological regulation, and precision implementation technologies. Key scientific issues such as
the durability of aluminum control technologies, regional adaptability, and synergistic regulation under multiple stresses were
thoroughly discussed. Comprehensive analysis indicates that construction of plant-microbe-soil interaction amelioration systems,
development of aluminum transformation models based on acid-base ion balance, and research and development of novel
materials such as nano-, controlled-release, and composite formulations represent important developmental directions for targeted
aluminum control in acidified soils, holding significant theoretical and practical implications for promoting sustainable utilization

of acidic soils.

Key words: Soil acidification; Al toxicity; Targeted Al control; Model construction; Multidimensional synergy
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Fig. 1 Process and mechanism of soil acidification
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Fig.2 Main occurrence forms of Al in soil and mechanism of action of targeted Al-controlling products
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