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摘  要：红壤是热带与亚热带地区宝贵的土壤资源。然而，在现代工农业高速发展的背景下，红壤酸化问题日益严峻，严重制约了

区域农业可持续发展和生态安全。本文系统综述了在自然和人为活动共同驱动下红壤的酸化过程，重点评述了不同土地利用下红壤

的酸化速率和估算方法，并提出了一套治理红壤酸化的多维度综合管理体系。本综述可为全面认识红壤酸化问题、科学评估其生态

风险以及制定高效的区域性阻控策略提供理论依据，这对保障红壤区土壤安全和生态环境健康具有重要的理论与现实意义。 
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Research Progresses on Acidification Processes and Integrated Management of Red Soils 
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Abstract: Red soil is a vital resource in tropical and subtropical regions. However, in the context of rapid modern industrial and 

agricultural development, red soil acidification has become increasingly severe, seriously constraining regional agricultural 

sustainability and ecological security. This paper systematically reviewed the acidification processes of red soils under natural and 

anthropogenic influences, critically evaluated the acidification rates and estimation methods associated with different land uses, 

and proposed a multi-dimensional, integrated management framework. This work provides a theoretical basis for a comprehensive 

understanding of the red soil acidification problem, the scientific assessment of its ecological risks, and the formulation of 

effective regional control strategies. This is of great theoretical and practical significance for safeguarding soil security and 

environmental health in red soil regions. 
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红壤是全球陆地生态系统中分布范围最广的土

壤资源之一，主要分布在热带和亚热带地区，其覆盖

了地球约 640 万 km2 的区域，占世界陆地总面积的

45.2%[1]。在我国，红壤主要位于长江以南的地区，

涉及广东、广西、海南、湖南、江西、贵州、云南、福

建、浙江、安徽等 15 个省区，总面积约 203 万 km2，

约占全国土地面积的 21%[2]。 

红壤的形成过程本质上是土壤脱硅富铝化与生

物富集的共同作用[3]。在湿热气候条件下，强烈的风

化作用导致土壤中的硅和盐基阳离子大量淋失，同时

促进交换性氢(H+)、交换性铝(Al3+)等致酸物质及铁、

铝氧化物的相对富集[4-5]。这不仅塑造了红壤的基本

性质，也赋予其酸性特质。红壤酸化导致土壤养分平

衡能力下降，理化性质趋于恶化，土壤中交换性铝、

锰及其他重金属毒性离子活度显著升高，对作物根系造

成毒害，最终威胁区域农业生产与生态环境安全[6]。 

从土壤分类学角度看，红壤是我国土壤发生分类

体系中的土类名称，可进一步划分为 5 个亚类，包括

(典型)红壤、棕红壤、黄红壤、山原红壤和红壤性土。

在全球不同的土壤分类系统中，红壤的土壤类型名称

有较大差异(图 1)。在中国土壤系统分类中，红壤可

参比为铁铝土、富铁土和淋溶土，而在美国土壤系统

分类中，可参比为氧化土(Oxisol)、老成土(Ultisol)、

淋溶土(Alfisol)和始成土(Inceptisol)[8]。 
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图 1  全球土壤类型分布图(基于美国土壤系统分类，翻译自文献[7]) 
Fig. 1  Global distribution of soil types (Based on USDA Soil Taxonomy, translated from reference [7] ) 

 
红壤酸化是自然和人为活动共同作用的结果，其

酸化过程、速率、估算方法及治理和改良一直是国内

外研究的热点，但目前尚缺少对这些成果的系统整

理、分析和总结。本文综述了红壤酸化过程与综合治

理的研究进展，以期为全面理解红壤酸化问题、科学

评估其风险以及制定利用与管理策略提供理论依据。 

1  红壤酸化现状 

全球范围内的红壤正面临着日益严峻的酸化问

题[9-11]。世界上约有 40% ~ 50% 的潜在耕地受到酸

化的影响[12]，且多数分布于热带和亚热带的红壤地

区。例如，巴西红壤的表层土壤 pH 低至 4.0[13]，而喀

麦隆红壤区表土 pH 甚至降至 3.3，即使在深度 70 cm

的土层 pH 依然低至 3.7[14]，均达到严重酸化水平。

如此普遍且严重的酸化问题不仅制约了红壤区的农

业发展，更对生态系统的长期稳定与健康构成了严重

威胁。 

我国南方红壤区多数土壤的 pH已降至 5.5以下，

部分土壤的 pH 甚至在 5.0 或 4.5 以下。第二次全国

土壤普查的数据显示，福建、湖南与浙江等省份的强

酸性土壤(pH 4.5 ~ 5.5)所占比例分别为 49.4%、38.0% 

和 16.9%，而酸性土壤(pH 5.5 ~ 6.5)占比分别为

37.5%、40.0% 和 56.4%[15](图 2)。其中，江西省的土

壤酸化情况最为严重，pH 低于 5.5 的土壤比例高达

71.0%[15]。 

近年来，我国红壤的酸化进程表现出明显的加速

态势，具体表现为酸化速率加快、范围扩张及强度加

剧的复杂局面。同时，长期不合理的耕作方式以及化

肥的过量施用加剧了红壤地区的土壤酸化问题。研究

表明，从 20 世纪 80 年代(1980s)到 21 世纪初，我国

农田土壤普遍发生了酸化，pH平均降幅为 0.13 ~ 0.80

个单位[9]。数据显示，我国亚热带地区 301 个农田土

壤的平均 pH 已从 5.37 分别降至 5.14(粮食作物)和

5.07(经济作物)，经济作物种植区的酸化速率约为粮

食作物的 2 倍[9]。从酸化面积变化来看，广东省的强

酸性土壤面积已由 1980s 的 473 km2 增长至 2007 年

的 18 097 km2，30 年间增长了近 37 倍[17]。在酸化程

度方面，江西省农田土壤 pH 在近 30 年内(1980s—

2012 年)下降了 0.53 个单位，酸化现象极为突出[18]。 

红壤酸化对我国南方的农业生产及生态环境构

成了严重威胁。在农业生产方面，土壤酸化直接损害

了作物的产量与品质。研究表明，如果氮肥施用量每

年增加 1%，预计我国农田土壤 pH 将在 40 年内下降

0.86 ~ 0.99 个单位，这将直接导致作物减产，预计减

产率将从 2010 年的 4% 上升至 2050 年的 24%[19]。

酸化问题在茶园、果园、菜地等经济效益较高的作物

种植区表现尤为突出。以赣南脐橙果园为例，果园土

壤的平均 pH 仅为 4.68，较背景值低 0.46 个单位，其 
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图 2  中国表层土壤的 pH[16]   
Fig. 2  Topsoil pH in China 

 
中酸性及强酸性土壤合计占比高达 82.7%[20]，严重制

约了脐橙产业的健康发展。尤其关键的是，土壤酸化

通过活化土壤中的铝离子等途径毒害作物根系，进而

威胁生态环境健康，引发生境质量下降，严重影响农

业生产与区域经济的可持续发展[21]。 

2  红壤酸化过程 

2.1  自然酸化过程 

红壤的自然酸化是在气候、母质、地形、植被等

成土因子的共同作用下，发生于地质时间尺度上缓慢

的生物地球化学过程[6,22]。pH 自然下降 1 个单位所需

的时间甚至可长达 229 万年[23]。在热带与亚热带湿

热的气候条件下，大气中的 CO2 溶解于土壤溶液中

形成碳酸，碳酸的解离为土壤提供了源源不断的

H+[24]。与此同时，降水不断淋洗土壤中的盐基阳离

子(Ca2+、Mg2+、K+、Na+)，这直接消耗了土壤中的

盐基(图 3)，也破坏了土壤固–液两相间的离子吸附–

解吸平衡[6]。随着盐基阳离子的持续流失，使得土壤

胶体表面的交换位点逐渐被 H+ 所占据。然而，吸附

于矿物表面的 H+并不稳定，其会进一步破坏矿物的

晶格结构，致使矿物中的铝转化为交换性 Al3+[25]。

Al3+ 随即占据交换位点，同时其水解作用又会释放出

更多的 H+，导致土壤酸度增加，使得盐基饱和度不

断下降[26]，最终引发土壤 pH 下降。 

植被的长期生长是红壤自然酸化的另一个关键

因素。在自然生态系统中，一方面，植物在生长过

程中持续吸收土壤中的矿质养分，尽管盐基阳离子

能通过凋落物分解回归土壤，但总体上仍表现为盐

基阳离子的净输出，尤其是处于生长期的树木，这

无疑会加速土壤的酸化进程[27]。另一方面，植物通

过根系从土壤深层吸收盐基阳离子并将其富集于地

表凋落物中，这在一定程度上能够减缓表层土壤的

酸化速率[22]。然而，由于植物吸收的阳离子通常多

于阴离子，为维持体内电荷平衡，根系会向土壤分

泌 H+[28]。研究发现，在热带森林生态系统中，林木

生长所导致的阳离子过量吸收是土壤酸化的主要

驱动机制，这一生物过程的 H+ 生成速率高达 3.0 ~ 

8.6 kmol/(hm2·a)[29]。 

不同植被类型对土壤酸化的影响存在显著差异，

部分“致酸植物”(如茶树、马尾松等)会导致土壤 pH

大幅下降[30-31]。Wang 等[30]的研究发现，相较于其他

林地，马尾松林地土壤的酸化现象最为显著，其表层

土壤 pH 比背景值低 0.5 个单位。植物残体的分解是

另一个重要的 H+ 来源。微生物在分解凋落物的过程

中会产生有机酸，同时有机质本身富含的羧基、羟基

等官能团也能解离出 H+[5]。因此，枯落物层较厚的

森林土壤(特别是针叶林土壤)通常比草地土壤表现

出更强的酸性[32]。正是这种长期的持续风化、淋溶

与生物作用的累积效应，最终形成了红壤普遍呈酸性

至强酸性的基本属性(图 3)。 
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图 3  土壤的自然和人为酸化过程(修改自文献[33])  
Fig. 3  Natural and anthropogenic processes of soil acidification(Modified from reference[33]) 

 

2.2  人为酸化过程 

人为活动显著加速了红壤的酸化进程，其驱动力

主要源于工业生产过程中酸性物质的大气沉降输入

与集约化农业导致的土壤内部致酸离子的产生。工业

排放引起的酸沉降是土壤酸化的重要来源。化石燃料

的大量消耗，导致 SO2 和 NOx 等酸性气体被排入大

气，通过光化学反应转化为硫酸、硝酸等强酸性物质，

最终以降水或固体颗粒物形式进入土壤，造成直接的

H+ 负荷[26,34-36](图 3)。这种外源酸的持续输入加速了

土壤中盐基阳离子的淋溶，并可能诱发铝的活化与毒

性效应[37-38]。我国长江以南的红壤区作为世界三大酸

雨区之一，长期承受着巨大的酸沉降压力[39-40]。以珠

三角地区为例，Wang 等[41]的研究表明，氮、硫沉降

是导致该区域森林土壤酸化的主要因素，贡献率分别

高达 49% 和 34%。尽管近年的监测数据显示大部分

地区的氮、硫沉降总量呈下降趋势，酸沉降对土壤酸

化的压力有一定缓解[42]，但对于缓冲能力较弱的红

壤，其造成的铝毒风险提升、盐基饱和度下降及微生

物群落结构变化等后续影响仍不可忽视[43-44]。 

不合理的农业管理措施，尤其是化学氮肥的长期

过量施用，被认为是导致农田红壤加速酸化的主导因

素[45-47]。氮肥施入土壤后，在硝化微生物的驱动下发

生硝化作用，此过程中每氧化 1 mol NH+ 
4 可释放 2 mol 

H+，直接导致土壤 pH 降低[48-49](图 3)。当作物根系

无法完全吸收硝化作用生成的 NO– 
3 时，淋溶作用将导

致其与盐基阳离子同时向下迁移流失[46](图 3)。有研

究发现，1981—2001 年，江西省兴国县约 95% 的农

田土壤发生酸化，其中耕层 pH 平均降幅高达 0.94

个单位[50]。此外，多项长期定位试验一致证实了氮

肥施用对红壤酸化的突出贡献[51-52]。除施肥外，耕作

制度与作物收获方式也对红壤酸化产生影响。作物每

年从土壤中带走的干物质生物量可超过 20 t/hm2，从

而导致盐基阳离子持续损失[9,53-55]。综上，红壤酸化

是在自然背景基础上，由外部酸沉降与内部农业活动

共同作用的结果。在农业生态系统中，由氮肥施用与

生物量移除引起的内部产酸过程已成为当前红壤酸

化的主导因素[47,56]。 

3  红壤酸化速率 

结合全球范围内的观测数据与研究发现，红壤酸

化速率与区域气候背景、土地利用方式、耕作管理措

施及植被类型等因素密切相关(表 1)。总体而言，受

高强度人为管理影响的农业生态系统，其酸化速率明

显高于自然或半自然生态系统，这揭示了人类活动是

当前红壤酸化的主要驱动因素。 

通过对全球红壤区不同土地利用下红壤酸化速

率的比较发现，在自然或受人为干扰较少的生态系统

中，土壤酸化速率较低。不同植被下土壤的酸化速率

差异显著(表 1)，这主要与植物物种及其独特的生物

地球化学过程密切相关。在自然生态系统中，针叶林

(如松树)土壤的酸化速率(0.21 ~ 1.65 kmol/(hm2·a))通

常高于阔叶林土壤(0.18 kmol/(hm2·a))[65]。这种差异

一方面可能源于松树的养分循环速率较低，为满足自

身营养需求，需从土壤中吸收更多盐基阳离子，同时 
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表 1  全球红壤区不同土地利用下的红壤酸化速率 
Table 1  Acidification rates of global red soils under different land uses 

研究区域 土地利用方式 酸化速率 单位 时间/年限 参考文献 

苜蓿–玉米 0.1 pH/a 1983—1987 年 [57] 巴西 

牧场 0.13 pH/a 2010—2017 年 [58] 

中国湖南祁阳 小麦–玉米 0.006 ~ 0.122 pH/a 1991—2006 年 [52, 59] 

中国华南红壤区 旱地 0.23 ~ 0.30 pH/a 1980s—2000s [9] 

中国贵州贵定 茶树 0.025 pH/a 35 a [60] 

中国湖南 旱地 0.03 pH/a 2004—2014 年 [61] 

中国福建 旱地、水浇地 0.87 pH/a 1983—2008 年 [62] 

水浇地 0.021 pH/a 中国广州增城区 

果园 0.024 pH/a 

水浇地 0.013 pH/a 中国广州南沙区 

果园 0.016 pH/a 

2005—2020 年 [63] 

小麦–玉米 0.06 ~ 0.07 
3.50 

pH/a 

kmol/(hm2·a) 
1990—2015 年 [64] 

白茅草 0.005 ~ 0.038 
0.13 ~ 1.30 

pH/a 

kmol/(hm2·a) 
10 ~ 40 a [65] 

松树 0.001 ~ 0.017 
0.21 ~ 1.03 

pH/a 

kmol/(hm2·a) 
25 ~ 50 a [65] 

阔叶林 0.001 ~ 0.006 
0.18 

pH/a 

kmol/(hm2·a) 
60 a [65] 

中国湖南祁阳 

小麦–玉米 0.1 ~ 5.6 kmol/(hm2·a) 1990—2008 年 [66] 

小麦 0.50 ~ 2.06 kmol/(hm2·a) 1978—1992 年 [67] 

小麦–蚕豆 0.73 ~ 2.16 kmol/(hm2·a) 1978—1992 年 [67] 

小麦–羽扇豆 1.36 ~ 2.22 kmol/(hm2·a) 1978—1992 年 [67] 

澳大利亚 

小麦–休耕 0.92 ~ 1.78 kmol/(hm2·a) 1978—1992 年 [67] 

撂荒 0.94 kmol/(hm2·a)  [68] 

油菜 1.75 kmol/(hm2·a)  [68] 

花生 1.95 kmol/(hm2·a)  [68] 

红薯 6.06 kmol/(hm2·a)  [68] 

中国江西吉泰盆地 

芝麻 6.51 kmol/(hm2·a)  [68] 

玉米 2.83 ~ 6.80 kmol/(hm2·a) 2017—2019 年 [69] 中国江西鹰潭 

旱地、水田、果园 3.84 kmol/(hm2·a) 2017—2018 年 [56] 

 
分泌更多 H+ 以维持电荷平衡[65]。另一方面，针叶林

的凋落物富含单宁、树脂和木质素等物质，其分解过

程可进一步产生酸性物质。 

农田生态系统是当前红壤酸化最为明显的区

域，其中旱地的土壤酸化速率普遍较高。以我国南

方小麦–玉米轮作系统为例，土壤 pH 年均降幅为

0.03 ~ 0.122 个单位(表 1)[52,59,61]。若基于质子平衡进

行估算，旱地酸化速率可达 0.1 ~ 6.50 kmol/(hm2·a) 

(表 1)[64,66-69]。不同作物类型对土壤酸化速率有显著

影响。研究发现，种植红薯和芝麻的土壤酸化速率分

别高达 6.06 和 6.51 kmol/(hm2·a)，而种植油菜和花生

的土壤则相对较低(1.75 ~ 1.95 kmol/(hm2·a))[68]，这表

明作物类型对酸化速率起着决定性作用。园地与水浇

地，尤其是实行集约化管理的茶园，是红壤酸化的一

个重要区域。茶园土壤酸化速率不仅受到农业管理措

施(如大量施用铵态氮肥和茶叶采摘带走盐基阳离子)

的影响，也与植物自身的生理特性(如富铝特性)紧密

相关。红壤区长达 35 年的定位观测数据显示，茶园表

层土壤 pH 正以年均 0.025 个单位的速率持续下降[60]。

相比之下，水浇地的酸化速率较低，年均降幅仅为

0.013 ~ 0.021 个单位[63]。此外，Zou 等[68]的研究发现，

在农业生态系统中荒地的酸化速率仅为0.94 kmol/(hm2·a)，

远低于周边的农田。这不仅再次印证了高强度的人为

活动是驱动红壤加速酸化的根本原因，也表明了通过

合理的管理措施(如休耕、轮作等)能够有效减缓土壤

酸化。土地利用变化是加剧红壤酸化的另一个驱动因

素。Wen 等[63]的研究发现，2005—2020 年，广州市

增城区和南沙区由水田转变为菜地或果园的土壤酸
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化速率(平均下降 0.77 ~ 1.05 个单位)显著高于未改变

土地利用类型的土壤(平均下降 0.20 ~ 0.36 个单位)。

在相同的土地利用变化模式下，花岗岩母质土壤的

pH 下降幅度显著高于冲积沉积物母质土壤，这是因

为不同母质类型的土壤酸缓冲性能存在差异，进而影

响了酸化速率[63]。 

4  红壤酸化速率的估算方法 

4.1  基于 pH 变化的酸化速率估算 

估算红壤酸化速率最直接且常用的方法是计算

土壤 pH在单位时间内的变化量[70]。其计算公式如下： 

pH
AR=

t


 (1) 

式中：AR 为土壤酸化速率(pH/a)；∆pH 为监测期内

土壤 pH 变化量；t 为时间跨度(a)。 

该方法通过量化土壤酸度在时间序列上的变化，

为比较不同区域、不同管理措施下的土壤酸化速率提

供了一个简便的指标。在众多长期定位试验和区域性

土壤酸化状况的调查中，该方法得到了广泛应用[59,61]。

例如，1985—2016 年，江西省不同土地利用方式下

的第四纪红壤均发生了显著酸化，其 pH 平均下降

0.32 个单位，平均土壤酸化速率为 0.01 pH/a[71]。 

采用 pH 变化速率来评估土壤酸化具有明显的优

势。该方法计算简便，结果直观，能清晰展现土壤酸度

的变化趋势，便于不同区域、不同时期及不同管理措施

间进行横向比较。然而，这一方法仅仅反映了土壤 pH

这一表观指标的变化，未能深入揭示其内在的 H+ 生成

与消耗机制，也无法体现土壤缓冲性能的变化。对于缓

冲性能不同的土壤，等量的 H+ 输入可能导致截然不同

的 ΔpH[72]。因此，该指标可能低估高缓冲能力土壤的

潜在酸化风险，或高估缓冲能力较弱土壤的实际酸化程

度。此外，该方法需要进行长期监测，短期观测值不仅

变化不大，而且易受到季节性波动的干扰，从而影响估

算结果的可靠性。因此，基于 pH 变化的酸化速率估算

方法尤其适用于长期定位试验中酸化程度的相对比较，

若需精确量化酸化强度或深入探究其驱动机制，必须结

合 H+ 收支平衡核算等更为精确的估算方法。 

4.2  基于酸碱缓冲容量的酸化速率估算 

土壤的酸碱缓冲容量(pHBC)作为衡量土壤抵御

pH 变化的内在能力指标，通常由实验室测得的酸碱

滴定曲线确定。基于该参数，Helyar 和 Porter[70]提出

了一种计算土壤酸化速率的公式： 

( pH) (pHBC BD )
AR=

V

t

   
 (2) 

式中：AR 为土壤酸化速率(H+, mmol /(hm2·a))；ΔpH

为监测期内 pH 的变化值；pHBC 为土壤的酸碱缓冲

容量(mmol/(kg·pH))；BD 为土壤容重(kg/m3)；V 为土

壤体积(m3/hm2)；t 为监测时间跨度(a)。 

该方法的核心在于将表观“强度”指标(ΔpH)转

化为内在“通量”指标(单位面积的净 H+ 负荷)[70]。

通过将 ΔpH 与土壤内在属性(pHBC、容重等)相结合，

该方法能够估算出 H+ 累积量[70]，使得不同土壤酸化

速率的比较更具科学性。有研究利用此方法量化出在

我国南方红壤区，长期施肥使得土壤酸化速率提高

3.2 ~ 3.9 mmol/(hm2·a)[46]。 

尽管该方法在定量估算上优势显著，但基于实验

室控制条件测定的土壤 pHBC，难以完全反映田间复

杂的生物地球化学过程(如有机质周转、根系活动、

氮转化)对土壤缓冲机制的影响。因此，在应用中最

理想的策略是将其与田间长期定位监测数据相结合，

实现实验室精准量化与田间真实过程的相互验证，从

而实现对红壤酸化速率更为准确的量化。 

4.3  基于模型模拟的酸化速率预测 

在估算红壤酸化速率与预测未来酸化趋势的研

究中，基于酸化过程的机理模型已经成为一种强大的

工具。这类模型的核心在于通过构建一系列基于物质

平衡与反应动力学原理的数学方程，来模拟土壤系统

中 H+ 产生与消耗的复杂过程，从而动态地揭示土壤溶

液与固相组分的长期变化。目前，在土壤酸化研究中应

用较广的主要是动态酸化模型，如 MAGIC 模型[73]、

SMART 模型[74]及 VSD+ 模型[75]等，它们能够通过

计算各关键元素在不同时间节点上的输入–输出平

衡，模拟并评估酸化的时间动态进程。例如，有研究

应用 VSD+ 模型对 1985—2019 年祁阳土壤的酸化动

态进行了细致的归因分析，发现水稻土在 5 年内的平

均酸化速率因氮转化和 HCO– 
3 淋溶的显著减少而大

幅下降(从 21 keq/(hm2·a)降至 5 keq/(hm2·a))[76]。这主

要是由于在淹水厌氧环境中，土壤中发生的反硝化作

用(NO– 
3→N2)会消耗大量 H+，从而抵消了部分由氮肥

硝化作用产生的 H+。相比之下，旱地土壤的酸化速

率则维持在较高水平且变化不大(从 17 keq/(hm2·a)减

少至 13 keq/(hm2·a))，其酸化过程始终由氮转化所主

导[76]。这一案例充分体现了过程模型在识别并量化

不同土地利用方式下主导酸化驱动因子的独特优势。 

酸化模型的优势在于时空尺度的灵活性与情景

预测能力，使其既可用于田块尺度的酸化速率估算，

也可扩展至区域尺度的大范围酸化风险评估[74-75]。模

型还能够通过模拟不同情景下的酸化过程，为制定红
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壤酸化防控措施提供科学依据[74-75]。然而，这些模型

的应用与解释也面临着严峻挑战，尤其是在处理关键

的地球化学过程时。首先，模型需要输入大量参数，

这些参数的获取往往成本高昂且存在不确定性[73-75]。

其次，更为关键的是，虽然这些酸化模型都考虑了土

壤的矿物风化过程，但模型普遍将矿物风化速率作为

一个外部输入的边界条件，而非一个随酸化进程变化

的内生变量。这种处理方式忽略了酸化过程本身(如

pH 降低)能够反过来影响盐基阳离子释放与风化速

率的动态反馈机制，这导致了土壤风化速率存在较大

误差[77]。此外，在模型参数校准环节，田间实测的

H+ 消耗量或盐基阳离子释放量是矿物风化与阳离子

交换两个过程的耦合结果，但现有模型难以将这两个

过程的贡献进行有效区分，这会给模型参数的校正带

来误差[77]。 

4.4  基于质子负荷的酸化速率估算 

基于 H+ 负荷的酸化速率估算是一种通过野外实

测 H+ 通量来量化土壤酸化速率的方法。该方法将特

定生态系统(如农田、小流域)视为一个整体，其核心

在于对系统内所有 H+ 产生与消耗过程进行监测与核

算，最终计算出净 H+ 负荷，即土壤的酸化速率[78]。

通过野外长期监测和室内样品分析，能够获取大气沉

降、化肥施用、生物量移除、离子淋溶等关键物料的

输入–输出通量数据[78]。土壤酸化速率的简化公式[69]

如下： 

soil D N UH =H H +H+  (3) 

式中：Hsoil 代表土壤的净 H+ 负荷，即土壤酸化速率

(kmol/(hm2·a))；HD、HN 和 HU 分别代表大气沉降、

氮转化和植物吸收的 H+ 净输入量。 

通过应用此方法，研究者不仅能得出土壤酸化速

率，还能精准量化各过程的相对贡献。例如，亚热带

红壤关键带的 H+ 负荷研究表明，氮转化是关键带内

主要的 H+ 来源(贡献率 68%)，其次为植物对阳离子

的过量吸收(贡献率 25%)，而阳离子交换与矿物风化

则是最主要的 H+ 消耗途径，据此计算出的土壤酸化

速率为 3.84 kmol/(hm2·a)(图 4)[56]。 

 

(图中红色字体代表 H+ 产生速率(mol/(hm2·a))，蓝色字体代表 H+ 消耗速率(mol/(hm2·a))。HD、HN 和 HP 依次对应大气沉降、氮转化及植

物离子过量吸收引起的 H+ 产生；HP-U、HP-O 和 HP-P 分别表示旱地、果园和水田中的 HP 过程；ANCBC、ANCH+Al 和 ANCS 则分别指示盐

基阳离子交换与矿物风化作用、酸性离子淋溶及 SO2- 
4 吸附导致的 H+消耗) 

图 4  典型红壤关键带中主要 H+ 产生和消耗过程(翻译自文献[56])  
Fig. 4  Annual H+ fluxes of key H+ production/consumption processes in Red Soil Critical Zone(Translated from reference [56] ) 

 
该方法的优势在于利用野外实测数据，对不同生

物地球化学过程在酸化中的贡献进行源/汇量化，为

深入理解红壤关键带的酸化机制提供了定量证据[78]。

在农田生态系统中，该方法常被用于揭示化学氮肥相

较于其他途径对酸化的主导性贡献[69]。尽管 H+ 负荷

的估算方法提供了较为全面的 H+ 产生与消耗通量，

但其应用多局限于研究设施良好的小流域或长期定

位试验站，在大尺度范围的推广仍存在限制。 
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4.5  基于风化计量关系的酸化速率估算 

在酸化速率的估算方法中，能否精准区分矿物风

化与阳离子交换对 H+ 的消耗，是决定估算准确性的

核心。H+ 负荷核算通常将两者合并计算，这导致了

对真实土壤酸化速率的高估 [24,79-80]。为解决这一问

题，可以借助土壤矿物风化过程中释放的盐基阳离子

与硅的化学计量关系(BC∶Si)进行区分。该方法基于

一个关键的地球化学原理：硅元素在表生环境中几乎

完全源自硅酸盐矿物的化学风化，而不受土壤阳离子

交换过程的影响[80]。因此，将硅作为示踪剂，结合

区域内主要土壤矿物风化过程中的 BC∶Si 计量关系

和流域元素输入–输出平衡，可从总盐基输出通量中

计算出矿物风化的贡献比例，再进一步计算出阳离子

交换过程消耗的盐基通量，从而可获得准确的土壤酸

化速率[80]。该方法成功解决了风化酸化耦合的核心问

题，实现了对土壤矿物风化与阳离子交换 H+ 消耗量

的精准区分。在亚热带森林流域的研究中，经此法校

正后的真实土壤酸化速率仅为传统元素平衡法估算值

的 54%，近一半的 H+ 消耗归因于矿物风化过程[80]。 

为了确定来自矿物风化的 BC∶Si 化学计量比，

杨金玲[81]建立了一种预洗脱模拟淋溶的试验方法，

旨在从复杂的土壤体系中区别出矿物风化过程。该方

法首先采用 EDTA-乙酸铵溶液对土壤进行预洗脱，

以去除土壤胶体表面吸附的交换性盐基[81]，随后使

用模拟酸雨对洗脱后的土壤进行淋溶试验，研究结果

显示，洗脱盐基阳离子后不同成土母质及同一母质不

同风化阶段的土壤，其 BC∶Si 值存在较大差异(0.3 ~ 

5.8)(表 2)[82-84]。在花岗岩发育的土壤剖面中，BC∶

Si 值从表层的 1.7 逐渐降至母质层的 0.3 ~ 0.4，这种

变化主要受黏粒含量、原生矿物(如长石、云母)、次

生矿物(如高岭石、蛭石)及土壤 pH、有机质等因素

共同控制[82]。值得注意的是，未经洗脱处理的土壤

所测得的 BC∶Si 值明显高于洗脱后土壤，最高可达

后者的 103 倍(表 2)。这说明忽略交换性盐基的影响将

严重高估风化释放的盐基通量，进而导致对酸化速率的

高估[84]。可见，土壤矿物类型及其组合共同决定了矿

物风化的计量关系，进而决定了不同矿物组成土壤的

H+ 消耗能力。因此，在应用 BC∶Si 化学计量比估算

区域土壤酸化速率时，必须采用研究区土壤风化的化学

计量比值(BC∶Si 值)，以确保评估结果的准确性。 

表 2  洗脱盐基和未洗脱盐基时土壤矿物的风化计量关系(BC : Si) 
Table 2  Stoichiometry of base cations and silicon (BC : Si ) during soil mineral weathering under base eluted and uneluted treatments 

BC∶Si 土壤类型 母质类型 发生层 深度 

(cm) 洗脱盐基 未洗脱盐基 

参考文献 

Ah 0 ~ 20 0.6 61.8 [84] 

Bw 20 ~ 60 0.7 55.6 [84] 

普通简育湿润雏形土 云母片岩 

C 60 ~ 90 1.8 38.7 [84] 

Ah 0 ~ 30 3.4 19.9 [84] 

Bw 30 ~ 75 4.3 11.5 [84] 

普通酸性湿润雏形土 片麻岩 

C 75 ~ 120 5.8 11.8 [84] 

Ah 0 ~ 40 0.6 55.7 [84] 

Bw 40 ~ 70 0.7 32.9 [84] 

普通简育湿润雏形土 安山岩 

C 70 ~ 100 1.0 47.6 [84] 

A 0 ~ 46 1.4 4.0 [83] 

B1 46 ~ 154 1.3 4.4 [83] 

腐殖黏化湿润富铁土 花岗岩 

B2 154 ~ 250 0.8 3.4 [83] 

A 0 ~ 18 1.7 4.7 [82] 

Bt1 18 ~ 32 1.1 4.7 [82] 

Bt2 32 ~ 43 1.3 4.4 [82] 

Bt3 43 ~ 59 2.3 3.7 [82] 

Bt4 59 ~ 96 3.7 3.9 [82] 

Bw 96 ~ 150 0.3 2.3 [82] 

BC 150 ~ 216 0.3 2.1 [82] 

C1 216 ~ 250 0.4 2.0 [82] 

C2 250 ~ 348 0.4 2.2 [82] 

普通酸性湿润淋溶土 花岗岩 

C3 348 ~ 700 0.4 2.7 [82] 



1236 土      壤 第 57 卷 

http://soils.issas.ac.cn 

基于 BC∶Si 化学计量关系的酸化速率估算方法

的核心优势在于从机制上消除了矿物风化对 H+ 的消

耗贡献，实现了对“真实”土壤酸化速率的准确定量，

为评估红壤的实际酸化风险提供了更为可靠的依据。

尽管该方法在应用过程中仍存在一些不确定性因素

(如植物对盐基阳离子和硅的吸收)，但其仍能有效区

分矿物风化与阳离子交换释放的盐基阳离子，为估算

土壤真实的酸化速率提供了新的方法和科学依据。 

5  红壤酸化的综合治理与可持续利用策略 

红壤是我国南方地区重要的农业与生态资源，其

健康状况与可持续利用，是保障区域农业生产稳定和

生态安全的关键。目前，严重的酸化问题制约了我国

南方农业的可持续发展。因此，红壤酸化的治理需遵

循“源头阻控新增酸化”与“末端修复已酸化土壤”

的原则，综合运用物理、化学及生物技术手段，形成

因地制宜、可持续的土地利用与管理模式。 

5.1  科学施肥与合理的水氮管理 

从源头减少 H+ 输入是减缓甚至阻断红壤加速

酸化的根本策略，而氮肥的精细化管理是关键。优化

氮肥形态能够直接阻止土壤产酸，例如优先施用产酸

潜力较低的硝态氮肥，或在普遍使用的铵态氮肥中配

施硝化抑制剂，如双氰胺(DCD)。室内培养试验发现，

添加 DCD 可有效延缓土壤中铵的硝化，并有助于提

高土壤 pH，经过 3 个月培养后，土壤 pH 比单施氮

肥提高了 0.46 ~ 0.82 个单位[85]。但该技术仍需通过

开展田间试验以进一步验证其实际效果。同时，通过

全面推行测土配方施肥和采用肥料深施等农艺技术，

能够有效提升氮肥的利用率，从投入量和利用率两个

维度上，最大限度地减少土壤氮素盈余及其淋溶损

失。氮素管理的成效进一步依赖于科学的田间水分调

控。Yu 等[86]的研究证实，与传统的沟灌相比，滴灌

技术可将土壤 N2O 排放量降低 34.1% ~ 81.4%，氮素

淋失量减少 35.3% ~ 68.4%。因此，以滴灌和喷灌为

代表的灌溉技术，通过实现水氮协同管理，不仅能有

效降低硝酸盐的淋溶损失，而且间接减缓了因氮素流

失而产生的土壤酸化。 

有机与无机肥料的配合施用是科学施肥的另一

个关键策略。大量研究证实，在我国南方的酸性红壤

上，畜禽粪肥等有机肥料常表现出优于单一化肥的经

济效益[87-88]，同时也能有效缓解土壤酸化。在长期定

位实验中，Cai 等[46]发现单施化肥导致土壤 pH 显著

下降了 1.11 ~ 1.56 个单位，而有机无机肥配施以及单

施猪粪处理的土壤并未发生明显酸化，后者甚至使土

壤 pH 提升了 0.92 个单位。由此可见，施用有机肥能

维持和提高红壤 pH，这主要源于有机肥料的多重改

良机制。多数有机肥本身 pH 较高，施入后可直接中

和部分土壤酸度[51]。同时，有机肥能有效提升土壤有

机质含量，进而增强土壤对酸碱变化的缓冲能力[89]。

此外，有机质在分解过程中释放的有机官能团，还能

与土壤中活化的铝离子发生络合反应，从而降低铝的

生物毒性[90-91]。在实际应用时，短期内有机肥与化肥

配施可以优势互补，既能保障作物生长期对速效养分

的需求，又能发挥有机物料的长期改良效果。 

5.2  土壤改良剂的应用 

对于严重酸化的红壤，施用石灰等改良剂是快速

中和活性酸、扭转酸化胁迫的有效措施。传统的石灰

类物质(如生石灰、石灰石、白云石粉等)能有效提升

土壤 pH、降低交换性铝含量，同时补充盐基阳离子[92]。

然而，石灰类物质在土壤中移动性较差，导致改良效

果多局限于表层土壤，且长期或过量施用还可能引发

土壤板结以及养分失衡等次生问题[93-94]。为降低土壤

改良成本，碱性工业副产物(如碱渣、粉煤灰)可作为

缓解土壤酸化的经济型替代材料，但这必须建立在对

重金属等潜在污染物进行严格管控的基础上，从而防

止土壤的二次污染[95-96]。尽管这类副产物中铜、锌、

铅、铬等重金属元素的含量相对较高，但普遍低于中

国及欧盟的重金属标准限值[96]。据此推算，在常规

农业施用量下，工业副产物所带来的重金属环境风险

处于可控范围[96]。 

以生物质炭为代表的新型改良剂因其兼具碱性、

高孔隙度和高阳离子交换量等多重优点，在改良土壤

酸化、提升肥力等方面展现出较大潜力[97-98]。Shi 等[99]

的研究发现，在向 4 种不同母岩发育的红壤中施入生

物质炭后，土壤的抗酸化能力显著增强，有效抑制了

因外源酸输入导致的土壤 pH 下降和交换性 Al3+ 的

增加。抗酸化能力的提升主要由两个机制共同驱动：

生物质炭加入后较高的土壤 pH(>5.5)以及生物质炭

表面丰富的羧基官能团[99]。尽管机理研究目前已取

得较多成果，但生物质炭在田间条件下的长效性及其

应用的经济可行性亟待进一步研究。 

近年出现的一种新兴的酸性土壤改良技术，是通

过向土壤中添加硅酸盐岩粉，实现吸收大气中多余

CO2、改良土壤酸性以及促进作物增产等作用，其实

质是利用“增强风化”治理土壤酸化[100]。施入土壤

的硅酸盐岩粉在风化过程中消耗土壤中的 H+ 并释放

出盐基阳离子，从而改善土壤酸化状况，同时给作物

带来了生长所必需的营养元素，可促进土壤肥力提
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升。研究发现，施加玄武岩粉可有效改善土壤酸度，

在 3 个月内，施加玄武岩粉的土壤 pH 平均下降 0.275

个单位，降幅小于未施用玄武岩粉的对照组，并且玄

武岩粉粒径越小，抑制土壤 pH 下降的效果越明显[101]。 

5.3  生物修复技术的应用 

利用生物自身的生命活动与生理特性来修复酸

化土壤，是一种极具潜力的策略。在微生物层面，可

以筛选并应用特定的耐酸微生物菌剂，通过其新陈代

谢活动来调节土壤微域的酸碱环境[102]。例如，有研

究发现，荧光假单胞菌(P. Fluorescens)在红壤中的生

长增强了土壤的抗酸化能力，同时有效抑制了酸化过

程中可溶性 Al3+ 和交换性 Al3+ 的产生，其核心机制

为细菌上的有机阴离子能与 H+ 结合形成中性分子基

团，从而消耗进入土壤环境的 H+[103]。在土壤动物层

面，蚯蚓等土壤动物的活动能改良土壤的物理结构，

同时其富含盐基阳离子的排泄物有助于中和土壤酸

度[104]。研究发现，在添加不同物种的蚯蚓后，其排

泄物的 pH 相较于对照提升了 0.41 ~ 0.79 个单位，

同时蚯蚓活动范围内的周边土壤 pH 也相应增加了

0.32 ~ 0.70 个单位[104]。此外，植物自身的生理特性

也提供了重要的修复途径，例如种植番茄等喜硝作物

在吸收 NO– 
3  时会释放 OH–，从而中和根际酸性环境，

是一种重要的生物修复机制[105]。 

5.4  优化作物选择与种植制度 

调整作物选择的首要原则是依据作物的耐酸性

进行合理布局，优先选种或培育耐酸植物，如茶树、

蓝莓、柑橘及某些豆科绿肥(如胡枝子)[26, 106]，甚至

可以发展喜酸经济作物产业。同时，还需优化种植制

度，通过发展间作、套作等多样化的复合种植模式，

增强农田生态系统的生物多样性，促进养分的高效循

环[107]。Yang 等[108]的研究发现，小麦与蚕豆的间作

模式能显著改良土壤的化学及生物学性状。间作体系

下土壤的 pH 显著提升，同时增加了土壤中细菌群落

的多样性以及有益微生物的相对丰度[108]。此外，充

分利用冬闲田等农时空隙，种植绿肥或覆盖作物，既

可减少裸露地表的水土与盐基阳离子流失，又可通过

其根系活动和有机物料还田持续改善土壤的理化性

状[109]。 

5.5  系统性的综合管理与可持续利用 

要从根本上应对红壤酸化挑战，就必须减少对单

一技术的依赖，转向因地制宜、多措并举的系统性综

合管理模式。该模式的首要前提是进行分区分类的精

准治理，需要进行详细的土壤调查与风险评估，对目

前的酸化土壤进行等级划分，优先将有限的资源投入

到酸化严重、铝毒问题突出且种植高价值酸敏感作物

的区域，并依据土壤的酸碱缓冲容量来确定改良剂的

施用量[26]。长远来看，治理的最终目标是构建健康

且富有弹性的复合农业生态系统[110-111]。为此，应推

广能够优化区域资源配置的管理模式，例如依据地形

梯度发展的“顶–坡–谷”立体生态农业(“丘上林草

丘间塘，河谷滩地果渔粮”的布局是典型代表)，以

及促进产业融合的“农–林–牧–渔”循环农业模式(如

“构树–猪–鱼”模式)[112-113]。这些模式能够最大限度

地提升生态系统内部的资源利用效率与物质循环，从

根本上减少对外部化学肥料投入的依赖，培养土壤的

自我调节与抗酸化能力。最后，建立并运行长效的监

测预警体系是保障治理成效的关键。通过在关键区域

布设长期定位监测网格，动态追踪土壤 pH、交换性

酸、盐基饱和度等核心指标的演变，定期发布土壤质

量评估报告，可为治理效果的科学评价和管理政策的

优化提供数据支撑，从而确保红壤资源在健康的状态

下得以长期利用。 

6  总结与展望 

近几十年来，围绕红壤酸化的现状、过程、速率

估算及综合治理方面，学者已经开展了系统性研究，

并取得了一系列重要进展，为红壤酸化问题的科学防

控及可持续利用提供了坚实的理论与技术支撑。然

而，当前仍存在诸多挑战：现有酸化速率估算方法在

时空尺度上的延展性与综合应用能力有限；红壤酸化

与作物产量、品质间的定量关系及障碍阈值尚未明

确；多数酸化改良措施在普适性、长效性与经济性方

面仍存在不足；尚未建立起区域性精准、高效、绿色

的综合治理体系。基于目前的研究现状与不足，未来

应加强以下 3 个方面的研究。 

1) 构建多尺度的酸化速率估算方法与智能化的

风险预警体系。现有酸化速率的估算方法虽各具优

势，但大多局限于田块或小流域尺度，缺乏大区域的

长期动态监测与预警能力。未来的发展方向应着力于

多源数据与多种方法的深度融合。例如，将遥感、无

人机高光谱等空天监测技术与 VSD+ 等过程机理模

型相耦合，开发能够动态评估与预测区域红壤酸化风

险的智能化平台。同时，应依托长期监测网络，建立

针对不同区域、不同利用方式的红壤酸化等级划分与

诊断标准，明确关键预警指标(如盐基饱和度、交换

性 Al3+含量等)，从而实现从“被动响应式治理”向

“主动预警与精准防控”的转变。 

2) 建立关键作物响应酸化胁迫的“剂量–效应”
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关系与受害阈值。尽管土壤酸化抑制作物生长已是共

识，但不同酸化程度与障碍因子(如氢毒、铝毒、养

分胁迫)对区域主要作物(如水稻、玉米、柑橘)产量和

品质影响的定量关系及临界阈值仍是目前研究的薄

弱环节。为此，需要开展更多长期定位与控制试验，

系统研究不同酸化指标对主要作物生长、养分吸收、

产量及品质的影响。最终目标是建立关键酸化指标(如

土壤 pH、交换性 Al3+)与作物产质量的“剂量–效应”

曲线，确定不同作物的临界阈值，为制定分区、分类、

分作物的精细化土壤管理与改良策略提供关键参数。 

3) 研发绿色、高效、多功能的酸化土壤改良技

术与模式。现有改良技术(如施用石灰、碱渣等)虽应

用广泛，但常伴随成本高、持效期短或有二次污染风

险等问题。未来技术研发应致力于开发绿色、高效且

可持续的土壤改良剂。一方面，需要开发兼具调酸、

增汇、固碳、提升养分有效性等多重功效的新型改良

剂，例如基于矿物原理的复合材料、功能导向的工程

生物质炭，以及高效解铝固磷的微生物菌剂等。另一

方面，应探索与智能农机装备相结合的精准施用技

术，实现改良剂的适量、分层、靶向投入，最大限度

地提高利用效率并降低成本。最终将先进的改良技术

与区域农业模式深度融合，构建综合治理体系，实现

红壤资源的长久健康与可持续利用。 
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